
[Tethys v1.1]
Spec Version: Nightly e64d42a

January 6, 2021

Conflux Protocol Specification
Chenxing Li†, Guang Yang†

†Conflux Dev Team

Abstract
The success of Bitcoin and its follow-ups have demonstrated the value of decentralized consensus system
among anonymous participants not trusting each other. On top of the consensus network there can be a public
ledger or even a general state transition machine, such that all participants agree on the state of the ledger
or the state machine. Conceptually the state machine can be Turing-complete and hence essentially a “world
computer” shared by all participants, whose results cannot be tampered by any single person or entity. However,
the processing power of the shared state machine is currently bottlenecked on the throughput of underlying
consensus system.
Conflux implements a Turing-complete state machine on top of a high-throughput consensus network. To achieve
a throughput of thousands of transactions per second, Conflux guarantees consensus on the total order of blocks
organized in a Tree-Graph. In this way, all forked blocks contribute to the security and throughput of Conflux as
well. In this work we discuss Conflux protocol design and implementation specifications.
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1. Introduction
Since the born of Bitcoin, various blockchain projects have demonstrated extraordinary success with the power of consensus
among permissionless and trustless parties. The most successful blockchain project after Bitcoin is widely considered to
be Ethereum, which generalizes the blockchain paradigm from a specialized value-transfer system to a more generalized
Turing-complete state machine that allows conceptually all kinds of computation. This generalized state machine, known as
Ethereum Virtual Machine (EVM), makes the Ethereum network essentially a decentralized computing platform where the state
advances on input of transactions. Sometimes Ethereum is referred to as the “world computer” that nobody can shut down,
except that its processing power is rather poor and severely bounded by the throughput of underlying consensus.

The consensus throughput of Bitcoin is (in expectation) one block per 10 minutes, with block size 1MB (or 2MB with
Segregated Witness (segwit)). Bitcoin is set to small block size and low generation rate mainly for security concerns. Intuitively,
when there is no adversary, the natural probability of forks is proportional to the ratio of block broadcasting time to block
(generation) time, since under the longest chain rule honest mining power may keep working on a fork during the propagation
of a newly mined block. Ethereum applies a tailored version of GHOST rule [1] and smaller block size to achieve a much
shorter block time, i.e. roughly < 100KB per 15 seconds. Inclusive Block Chain Protocol [2] is a “block-DAG” proposal which
defines a total order of blocks in a directed acyclic graph (DAG) rather than a chain, with the major advantage over GHOST
that all forked blocks contribute to the consensus throughput as well. Another line of scaling techniques trades security and
decentralization for scalability by using sharding, sidechains, or other second layer extensions. In extreme cases, centralized
and somehow permissioned consensus systems are implemented in practice.

Conflux is a project which aims at building a high throughput first layer consensus system without any compromises in
security and decentralization; a generalized computation platform that securely processes at least thousands of transactions per
second which makes the throughput of consensus is no more a bottleneck. The positioning of Conflux is a strong backbone
consensus network on which a numerous number of unprecedented applications and extensions can germinate and thrive.
Technically, we follow a similar idea as [2] but organize blocks in a Tree-Graph, which enables a fast implementation of the
Conflux protocol.

2. Conventions
Throughout this document, we use the following conventional notations:
• B denotes the set of bit values, i.e. B≡ {0,1}. BY denotes the set of byte values, i.e. BY≡ {0, . . . ,255}.
• N denotes the set of non-negative integers.
• For every n ∈ N, we use Bn to denote a binary string of n bits, and BYn for a string of n bytes. In particular, BY= B8.

– Furthermore, we denote by B∗ and BY∗ the set of binary or byte strings of arbitrary length, i.e. B∗ ≡ ∪i∈NBi and
BY∗ ≡ ∪i∈NBYi.

– For convenience, we let Nn ≡ {0,1, . . . ,2n−1} be the set of non-negative integers smaller than 2n.

– The empty string (or the empty series) is denoted by ε , which is distinguished from the empty set denoted by ∅.

• Numbers are in decimal base by default. Binary numbers are indicated with square brackets with subscripts, e.g.
[0100]2 is the 4-bit binary representation of 4. The subscript ch represents the character representation of bit string, e.g.
[ab]ch = [6162]16 = [0110000101100010]2.

• When interpreting 256-bit binary values from N256 as integers, the representation is big-endian.
• When a 256-bit machine datum in B256 is converted to and from a 160-bit address or hash in B160, the rightwards

(low-order for BE) 160 bits (20 bytes) are used and the leftmost 96 bits (12 bytes) are discarded or filled with zeros, thus
the integer values (when the bytes are interpreted as big-endian) are equivalent.

• Tuples are typically denoted with bold upper case letters such as A. For frequently used tuples, we denote by T for a
Conflux transaction, B for a Conflux block, and H for the header of a block.

– Subscripts can be added to refer to an individual component in the tuple, e.g. Tn denotes the nonce of the transaction
T. The type of referred components is the same as the type of subscript, e.g. BH denotes the header of a block B,
where the header itself is another tuple of elements. For succinctness we also write H(B)≡ BH and sometimes
simply H when there is no ambiguity. Also for succinctness, we sometimes use B and H interchangeably if there is
no ambiguity, e.g. Bd stands for the target difficulty of block B, which is formally denoted as H(B)d or BHd .

– In case we are considering many transactions or blocks, we add superscripts to refer to a specific one of them, e.g.
T1 denotes the first transaction in a sequence.

• The Tree-Graph structure of blocks is typically denoted by G, which is a graph consisting of blocks represented by
vertices and parent/referee relations represented by two kinds of directed edges.
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• Scalars and fixed-length sequences of elements (arrays, strings, and vectors) are denoted with normal lower case letters,
e.g. n is used to denote a transaction nonce. Those with a special meaning may be denoted with Greek letters.

• Sequences of potentially arbitrary number of elements are typically denoted with bold lower case letters, e.g. o is used to
denote the byte sequence generated as the output data of a message call.

• The highly structured state values are typically denoted with bold lower case Greek letters, e.g. σ (and its variants) is
used to denote the world-state, and µ for machine state.

• Square brackets are used to index subsequences of a sequence, with index starting from 0, e.g. µs[0] refers to the first
item on the machine’s stack and µm[0 . . .31] denotes the first 32 items of the machine’s memory.

– Some objects like the global state σ is interpreted as a set of key/value pairs. Thus the square bracket after σ refers
to corresponding value of the given key (i.e., account address).

– Square brackets use negative index to access an array from the end like Python, e.g. µs[−1] refers the last item on
the machine’s stack.

• Functions are typically denoted by upper case letters and subscripts are used for specialized variants, e.g. C is the general
cost function and CCALL is the cost function for the CALL operation. Specific functions operating on states are denoted
by upper case calligraphic letters, e.g. C denotes the Conflux global state transition function.

– For every function F defined on D, we let F∗ denote the function on range D∗ that element-wise applies F on its
input items, i.e. F∗

(
(x1,x2, . . .)

)
≡ (F(x1),F(x2), . . .).

• The superscript of a function with parentheses like f (i) represents call function f for i times recursively. Formally,
f (1)(·)≡ f (·) and f (i)(·)≡ f (i−1)( f (·)) for i≥ 2.

• The indicator function I(·) converts a boolean variable to integer. Formally, I(True) = 1 and I(False) = 0.

Frequently used functions:
• P: the parent function takes a block B as input and returns the parent block B′, i.e. B′ is referenced in B and designated

as the parent of B. Formally, P(B)≡ B′ : KEC
(
RLP(B′)

)
= H(B)p.1

• CHAIN: the chain function takes a block B as input and returns the chain from genesis block to block B following only
parent edges. Formally, for genesis block G, CHAIN(G)≡G; For other blocks B, CHAIN(B)≡ CHAIN(P(B))◦B.

• SIBLING: the sibling function takes a block B as input and returns the blocks which have the same parent as B. Formally,
SIBLING(B)≡ {B′ | P(B′) = P(B)∧B′ 6= B}.

• PAST: the past function takes a block B as input and outputs all blocks in the “past set of B”, i.e. all blocks that are
directly or indirectly referenced by B. The set PAST(B) does not include B, since B cannot reference itself.

• FUTURE: the future function takes a Tree-Graph G and a block B ∈G as inputs and outputs all blocks in the “future set
of B”. Formally, FUTURE(B;G)≡ {B′ ∈G | B ∈ PAST(B′)}.

• EPOCH: the epoch function takes a block B as input and returns a sequence of all blocks in the epoch of B, sorted as in
the Conflux total order defined in Section 4.2.4.

• BlockNo: the block number function takes a Tree-Graph G and a block B as inputs and returns the index of B in the
total order of blocks specified by G, where the index starts from 0. In particular, for the genesis block G and for
every Tree-Graph G there must be BlockNo(G;G) = 0. Note that BlockNo(B;G) depends on G and it is different
from PAST(B) which is fully determined by B. For every G and B ∈ G there must be BlockNo(B;G) ≥ PAST(B)
since all blocks in PAST(B) precede B in the total order. Furthermore, for B,B′ ∈ G and B 6= B′, there must be
BlockNo(B;G) 6= BlockNo(B′;G) because distinct blocks cannot have identical index in the total order. When the
Tree-Graph G is clear from context, we may write BlockNo(B) for succinctness.
• PIVOT: the pivot function takes a block B as input and outputs the pivot block in the epoch of B.
• S: the sender function takes a transaction T as input and returns the sender of T, where in particular the sender is

represented by its address.
• RLP: this is the serialization function that encodes an input of arbitrary length into a structured binary data, i.e. a byte

array explicitly containing information about the length of the input. For more details see Appendix B in [3].
• ToList: this function takes a key/value set whose keys are integers or bit/byte sequences the values are integers. It outputs

a sequence of key/value pairs for the entry with non-zero value in ascending order or lexicographical order of key.
• TRIE: the trie function maps an arbitrary-length binary byte array s into a 256-bit commitment that represents the

database storing s in a modified Merkle Patricia tree (trie).
• KEC: the Keccak 256-bit cryptographic (collision-resistant) hash function that maps an arbitrary-length binary byte array

to a random-looking binary string in B256. Furthermore, we assume KEC implements a random oracle, i.e. finding a
random collision of KEC requires in expectation roughly 2128 attempts and a specific collision requires 2256. Similarly,
KEC512 refers to the 512-bit cryptographic hash function Keccak-512.

1One may argue whether P is well-defined since KEC has collisions. However, as long as the collision cannot be found in practical situations, the function
P only need to look up such a B′ from existing blocks and returns ⊥ if there is none.



Conflux Protocol Specification — 6/67

• PoW: this is the proof-of-work function, which takes a block header as input and returns a scalar in B256.
• QUALITY: this is a measurement of the proof-of-work quality of a given block, i.e. how unlikely it is to find such a block.

It takes a block or a block header as input and outputs a scalar in N256. Essentially, a block B with header H = H(B)
has quality QUALITY(B)≡QUALITY(H)≡

⌊
2256/

(
PoW(H)− [Hn[1 . . .127]]2×2128 +1

)⌋
except for a few marginal

cases. See Section 9.1 for more details.

2.1 Value
To incentivize the maintenance of the Conflux network and charge users for consumption of resources, Conflux has an intrinsic
currency called Conflux Coin or simply Conflux, denoted by CFX for short. The smallest subdenomination is denoted by Drip,
in which all values processed in Conflux are integers. One Conflux is defined as 1018 Drip. Frequently used subdenominations
of Conflux are list as follows:

Multiplier (in Drip) Name

100 Drip
109 GDrip
1012 uCFX
1018 Conflux (CFX)

3. Basic Components
In an overview, the Conflux world-state consists of a list of accounts and the associated account states, and the global state
is updated via transactions. The Conflux blockchain stores all processed transactions in blocks, together with necessary
information in block headers which enables a total ordering of all blocks. In this section we discuss the meaning of accounts,
transactions and blocks in more details.

3.1 Accounts
The Conflux global state is described in an account model, with the basic storage component called an account. Every actor,
which is either a person or an entity that is able to interact with the Conflux world, has its necessary information stored in
an account α as a key/value pair (αaddr,αstate) of address and corresponding states. The account address αaddr is a 160-bit
identifier. The account state αstate = (αbasic,αcode,αstorage,αdeposit ,αvote) consists of five components. The account basic state
αstate, the code info αcode, the deposit list αdeposit and the vote list αvote are four serialized sequences in an RLP structure (c.f.
[3]). The account storage αstorage is a set of key-value pairs which map 256-bit address to a serialized storage information in an
RLP structure. Furthermore we note that each account α is associated with a pair of public key and private key

(
αpubkey,αprikey

)
.

The account address is the concatenation of 4-bit type indicator and a 156-bit digest of the associated public key:

αaddr ≡ Typeα ◦KEC
(
αpubkey

)
[100 . . .255] (1)

where Typeα ∈ B4 is the type indicator, which is Typeα = [0001]2 for normal accounts (a.k.a. non-contract accounts),
Typeα = [1000]2 for (Solidity) contracts, and Typeα = [0000]2 for built-in/reserved contracts (a.k.a. “precompiled contracts”).

For succinctness and convenience, and as long as there is no ambiguity, we will write α without subscript for the state of an
account and let a≡ αaddr denote the corresponding address.

Basic state An account basic state αbasic ≡ (αn,αb,αc,αt ,αo,αr,αa,αp) consists of the following fields.
• nonce: A scalar counter recording the number of previous activities initiated by this account. Formally denoted by

αn ∈ N256. For example, the number of transactions sent from αaddr, or the number of contract-creations in the case this
account is associated with codes.

• balance: A scalar value equal to the number of Drip owned by this account. Formally denoted by αb ∈ N256.
• codeHash: The hash of the EVM code that gets executed when αaddr receives a message call. Unlike other fields, it

is immutable once established. All such code fragments are stored in a state database for later retrieval. This hash is
formally denoted by αc ∈ B256, which satisfies αc = KEC(p) when the stored code is p.

• stakingBalance: A scalar value equals to the number of staked Drip. Formally denoted by αt ∈ N256. (See section 8.3
for details)

• storageCollateral: A scalar value equals to the number of Drip used as collateral for storage, which will be returned to
balance if the corresponding storage is released. Formally denoted by αo ∈ N256. (See section 7 for details)

• accumulatedInterestReturn: A scalar value equals to the number of Drip in accumulated interest return. Formally
denoted by αr ∈ N256. (See section 8.3 for details)
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• admin: The address of the administrator αa ∈ B160. (See section 8.2 for details)
• sponsorInfo: The sponsor information contains five components: sponsor for gas, sponsor for collateral, sponsor gas

limit, sponsor balance for gas and sponsor balance for collateral. Formally denoted by αp ∈ (B160)
2× (N256)

3. (See
section 8.1 for details). We use αp[gas]a, αp[col]a, αp[limit]a, αp[gas]b and αp[col]b to reference these five components.

Storage state An account’s storage state αstorage (or αs for abbreviation) is a key/value database representing the account’s
storage state, if α is a contract account. Every storage entry is keyed by an arbitrary length bit-string k ∈ B∗ and is represented
as (v,o) ∈ N256×B160, where v denotes the value stored in this entry and o denotes the owner who provides storage collateral
for this entry. (See section 7 for details about storage collateral.)

We use αs[k] to represent storage entry (v,o) keyed by k and use αs[k]v and αs[k]o to denote corresponding fields. We
denote by αs[k] =∅ for the case the storage state doesn’t contain an entry with key k.

Code information For a contract account α , its code information αcode ≡ (αp,αw) stores the account code αp ∈ BY∗ and
the address αw ∈ B160 who paid the code storage collateral.

Staking vote info An account’s staking vote list αvote (or αv for abbreviation) is a key/value set representing the vote staking
info unlock at given block number. Each entry is keyed by a block ordering index i ∈ N64 stores the staking vote amount
s ∈ N256 in Drip. It means that the account promises to lock at least s Drip before block with order index i. See section 8.3 for
more details.

Deposit list An account’s deposit list αdeposit ∈ (N256×N64×N256)
∗ is a series of deposit item. Each entry is a handful of

deposited tokens in a ternary tuple of its amount (in Drip), its deposit time (measured in the total number of blocks) and its
accumulated interest rate. We use αdeposit [amt],αdeposit [idx],αdeposit [accIR] refers the three components. See section 8.3 for
more details.

In initialization of each component, Conflux sets all the bit values, byte values and integers to zero and sets arbitrary length
series to empty set, except the code hash which is set to the hash value of empty string. Each account state component is
initialized as follows

α
0
basic ≡ (0,0,KEC(ε),0,0,0,0,(0,0,0,0,0)) (2)

α
0
basic smp ≡ (0,0,0,0,0) (3)

α
0
code ≡ (ε,0) (4)

α
0
storage ≡ ε (5)

α
0
vote ≡ ε (6)

α
0
deposit ≡ ε (7)

α
0 ≡ (α0

basic,α
0
code,α

0
storage,α

0
vote,α

0
deposit) (8)

Given the Conflux world-state σ and an address a ∈ B160, we denote by σ [a] for the state αstate of the account α with
address a = αaddr, i.e. σ [a]≡ αstate. We denote by σ [a]≡∅ if the account with address a is never initialized. For succinctness,
we denote by σ [a]s for storage component αstorage, σ [a]v for staking vote component σ [a]vote and σ [a]d for deposit component
σ [a]deposit .

The world-state σ never stores the account state αstate equals to initialization value α0. So σ [a] ≡ ∅ is equivalent to
σ [a] ≡ α0. For the key value structure components αs and αv, we also use the notation ∅ and zero initialization value
interchangeably.

3.2 Hash Digest of World-State
3.2.1 State entries
Conflux encodes each component of each account in format of (k,v) ∈ B∗×B∗ respectively.

Basic entry. The basic entry stores basic components αbasic if αbasic 6= α0
basic. Specially, for a non-contract address, Conflux

doesn’t stores the fields only related to contract, like code hash αc, contract admin αa and sponsor info αp. Let αbasic smp ≡
(αn,αb,αt ,αo,αr) denote the basic component with only the fields in a normal address. Formally

k ≡ αaddr (9)

v≡
{

RLP(αbasic) Typeα = [1000]2
RLP(αbasic smp) otherwise

(10)
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Storage entry. The storage entry stores all the storages in αs. Given account α with address αaddr, for each storage key
s ∈ B256 with αs[s]v 6= 0, we have

k ≡ αaddr · [data]ch · s (11)

v≡

 RLP(αs[s]v) αaddr = αs[s]o
RLP(αs[s]v) αaddr = astake ∧ k ∈ {k1,k2,k3,k4,k5}
RLP(αs[s]) otherwise

(12)

where: (13)
astake ≡ 0x0888000000000000000000000000000000000002 (14)

k1 ≡ [accumulate interest rate]ch (15)
k2 ≡ [interest rate]ch (16)
k3 ≡ [total staking tokens]ch (17)
k4 ≡ [total storage tokens]ch (18)
k5 ≡ [total issued tokens]ch (19)

There are five special storage entries storing some statistic information about Conflux blockchain, which have no storage
owner.

Storage root entry. The storage root entry stores the storage layout entry for account α if Typeαaddr
∈ {[0000]2, [1000]2}

and αn 6= 0.

k ≡ αaddr · [data]ch (20)
v≡ [0000]16 (21)

Code entry. The code entry stores the component code info αcode if αcode 6= α0
code.

k ≡ αaddr · [code]ch ·αc (22)
v≡ RLP(αcode) (23)

Staking vote list entry. The staking vote list entry stores the component staking vote list αvote 6= α0
vote.

k ≡ αaddr · [vote]ch (24)
v≡ RLP(ToList(α ′vote)) (25)

where:
α
′
vote ≡ αvote removing all the key x with αvote[x] = αvote[x−1] (26)

Deposit list entry. The deposit list entry stores the component deposit list αdeposit 6= α0
deposit .

k ≡ αaddr · [deposit]ch (27)
v≡ RLP(αdeposit) (28)

3.2.2 Multi-version Merkle Patricia Trie
Ethereum collects all the key/value pairs into MPT (Merkle Patricia Trie) and updates it during execution of transactions.
However, in a high throughput blockchain system, the MPT may be accessed in a high frequency and hence become a bottleneck
of performance. Conflux maintains a read-through write-back cache and commits cached changes to MPT at the end of
epoch execution.

Formally, at any time, Conflux maintains three key/value sets T0,T1,T2, which are called snapshot, intermediate set and
delta set respectively. The later one is the cache of the former one. T2 is the only one updated during transaction execution. In
order to balance the keys in MPT delta set and achieve a high performance, MPT T2 has a different way in computing keys. Let

p≡ KEC(TRIE(T0),TRIE(T1)) (29)
faddr(αaddr, p)≡ KEC(p[0..11] ·αaddr)[0..11] ·αaddr (30)
fstore(s, p)≡ KEC(p · s)[4..31] · s (31)
(The index here are applied on byte-level.)

The key is defined as (the symbols are inherited from the previous section)
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• Basic entry. k ≡ faddr(αaddr, p)
• Storage entry. k ≡ faddr(αaddr, p) · [data]ch · fstore(s, p)
• Storage root entry. k ≡ faddr(αaddr, p) · [data]ch

• Code entry. k ≡ faddr(αaddr, p) · [code]ch ·αc
• Staking vote list entry. k ≡ faddr(αaddr, p) · [vote]ch

• Deposit entry. k ≡ faddr(αaddr, p) · [deposit]ch

Delta set. After an epoch execution, if a state entry is added, updated or removed, its newest content will be added to the
delta set. Notice that the delta set only compares the state entry before and after the epoch execution. It is not aware of the
intermediate steps during epoch execution. In case of deleting a state entry, the value of corresponding entry will be set to ε in
the delta set.

The intermediate MPT will be merged to snapshot MPT every 100000 epochs. In particular, for some integer N, after
execution of epoch 100000 ·N, 2 Conflux will merge intermediate set T1 to snapshot T0 before computing the state root of pivot
block on epoch 100000 ·N. Each time the intermediate MPT is merged, Conflux sets current delta MPT as new intermediate set
and resets delta set as emptyset. Formally,

T ′0 ≡MPTMerge(T0,T1) (32)
T ′1 ≡ T2 (33)
T ′2 ≡∅ (34)

where MPTMerge is the function updates the entries in T0 which have a new version value in T1. Specially, for the entries with
initialization value, T0 removes them.

3.2.3 State root

Let TRIE(T (i)
0 ),TRIE(T (i)

1 ),TRIE(T (i)
2 ) be the roots of MPT after execution of epoch i, then the state root of epoch i should be

StateRoot(i) ≡ KEC(RLP(TRIE(T (i)
0 ),TRIE(T (i)

1 ),TRIE(T (i)
2 ))).

Notice that Conflux doesn’t insert StateRoot(i) to the header of pivot block in epoch i, see the following for details.

3.3 Transactions
A Conflux transaction T is a single instruction composed by an external actor with a Conflux account α , and this instruction is
cryptographically signed under the associated private key αprikey of the sending account α . The authentication key, i.e. the
sending account’s associated public key αpubkey, is also included in the transaction for verification.

There are two types of transactions depending on the “destinations”:
1. to an account address: these are normal transactions that may transfer value and/or result in message calls, known as

action transactions;
2. to “nowhere”: these transactions are used to create new contracts, known as contract creation transactions or simply

creation transactions.
Both types of transactions share the following common fields:
• nonce: A scalar value equal to the number of previously sent transactions. Formally denoted by Tn ∈ N256.
• gasPrice: A scalar value indicating the number of Drip to be paid per unit of gas that is consumed as a result of the

execution of T. Formally denoted by Tp ∈ N256.
• gasLimit: A scalar value indicating the total amount of gas paid for the cost of the execution of T. This is paid up-front,

before any actual computation is done, and may not be increased or refunded later. Formally denoted by Tg ∈ N256. It is
the transaction sender’s responsibility to avoid any extravagance caused by an unnecessarily high gasLimit.

• action: A variable size field indicating the action of this transaction, which is either a call to an address or a creation,
formally denoted by Ta ∈ B160∪B0. For a call transaction, action Ta indicates a 160-bit address of the recipient, which
refers to either a normal account or a contract account; otherwise in case of a creation transaction, the recipient is indeed
the newly created contract and we interpret Ta as the only element in B0 and write Ta = ε .

• value: A scalar value equal to the amount of Drip that the transactions sender wants to transfer to the recipient, i.e. the
account specified in Ta or the newly created contract. Formally denoted by Tv ∈ N256.

• storageLimit: A scalar value indicating the maximum increment of storage used in the execution of T, measured in
bytes. Formally denoted by T` ∈ N64.

2Since Conflux defers the execution of transactions for 5 epochs, the execution of epoch i means the execution for transactions in epoch i−5. See block
component deferredStateRoot for details.
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• epochHeight: A scalar value specifying the range of epochs where T can be executed. Formally denoted by Te ∈ N64
such that T can only be executed between the epochs of [Te−100000,Te +100000].

• chainID: A binary chain id indicating where T is intended to be executed. Formally denoted by Tc ∈ N32 and the chain
id of Conflux is a constant Tc = 2.

• v, r, s: Corresponding fields of the recoverable ECDSA signature of T, formally denoted by Tw, Tr and Ts.

In additional to the shared fields, a transaction may contain either of the following fields of unlimited length byte arrays for
contract creation and invocation:
• init: A byte array specifying the EVM code for the initialization procedure, formally denoted by Ti ∈ BY∗. Note that

init is executed once and discarded thereafter, and it returns another code fragment body as the actual contract code that
will be executed each time the contract account receives a message call (either through a transaction or due to the internal
execution of code).

• data: A byte array specifying the input data of the message call to an existing contract, formally denoted by Td ∈ BY∗.
There is a function S(·) that maps a transaction to its sender using the recoverable ECDSA signature, i.e. S(T) henceforth

represents the sender of the transaction T. For convenience, we further introduce the function LT that parses a transaction T as
follows:

LT(T)≡

{
(Tn,Tp,Tg,Ta,Tv,T`,Te,Tc,Ti,Tw,Tr,Ts) if Ta = ε

(Tn,Tp,Tg,Ta,Tv,T`,Te,Tc,Td,Tw,Tr,Ts) otherwise
(35)

3.4 Blocks
The Conflux blockchain organizes all on-chain information in blocks. Every Conflux block B consists of two parts: a block
header H and a list of transactions Ts. The header H contains a list of other unreferenced block headers (a.k.a. referee blocks or
simply referees).

The block header H is a collection of relevant pieces of information:
• parentHash: The Keccak 256-bit hash of the parent block’s header, formally denoted by Hp ∈ B256.
• height: A scalar value equal to the height of the block, which is also the number of parent references to reach the genesis

block. This is formally denoted by Hh ∈ N64. The genesis block has a height of zero.
• timestamp: A scalar value equal to the reasonable output of Unix’s time() at this block’s inception. Formally denoted by

Hs ∈ N64.
• author: The 160-bit address of the author of this block, formally denoted by Ha ∈ B160. This is indeed the beneficiary’s

address to receive all rewards caused by successfully mining this block.
• transactionRoot: The Keccak 256-bit hash of the root node of the trie structure populated with each transaction in the

transaction list portion of the block, formally Ht ∈ B256.
• deferredStateRoot: The Keccak 256-bit hash commitment of the state after all “stable transactions” are executed and

finalized, formally Hr ∈ B256. Note that due to deferred execution in Conflux, “stable transactions” are those included in
the past blocks of the pivot block of 5 epochs ago, i.e. 5 steps along the parent references.

– If the blame field is zero, i.e. Hm = 0, then Hr is the root node of the state trie after all “stable transactions” are
executed and finalized.

– Otherwise if Hm > 0, then Hr will be the Keccak 256-bit hash of the vector consisting of the state root in the
previous case and the corrected state roots of B’s ancestors until (not including) the first ancestor that is not blamed.

• deferredReceiptsRoot: The Keccak 256-bit hash commitment of the receipts of each transaction executed when updating
the deferredStateRoot field of the block, formally He ∈ B256.

– If the blame field is nonzero, i.e. Hm = 0, then He is the Keccak 256-bit hash of the root node of the trie structure
populated with the receipts of transactions in the epoch that is just executed.

– Otherwise if Hm > 0, then He will be the Keccak 256-bit hash of the vector consisting of the receipt root in the
previous case and the corrected receipt roots of B’s ancestors until (not including) the first ancestor that is not
blamed.

• deferredLogsBloomHash: The Keccak 256-bit hash commitment of the Bloom filter composed from indexable infor-
mation (logger address and log topics) contained in each log entry from the receipts of all transactions executed when
updating the deferredStateRoot field, formally Hb ∈ B256.

– If the blame field is zero, i.e. Hm = 0, then Hb is the Keccak 256-bit hash commitment of the Bloom filter composed
from receipts of transactions in the epoch that is just executed.
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– Otherwise if Hm > 0, then Hb will be the Keccak 256-bit hash of the vector consisting of the Bloom filter
commitment in the previous case and the corrected Bloom filter commitments of B’s ancestors until (not including)
the first ancestor that is not blamed.

• blame: A scalar value Hm ∈N32 indicating the number of immediate ancestors whose header is incorrect in the execution
state fields: deferredStateRoot, deferredReceiptsRoot, deferredLogsBloomHash, or blame. This blame field is
relevant in reward distribution.
For example, if P(B) is correct on all the four fields then Hm = 0; if any of these fields is wrong in P(B), then Hm ≥ 1.

• difficulty: A scalar value Hd ∈ N256 specifying the target difficulty level of this block. This is calculated from the
previous block’s difficulty level and the timestamp.

• adaptiveWeight: The Boolean value Hw ∈ B indicating whether adaptive weight is triggered.
• gasLimit: A scalar value H` ∈ N256 equal to the current limit of gas expenditure per block. Starting from H`(G) ≡

3×107 = 30000000.
• refereeHash: The serialized RLP sequence of the referee list consisting of Keccak 256-bit hashes of referee blocks,

formally denoted by Ho ∈ BY∗. This list consists of up to 100 hash references of referee blocks. For convenience, we let
U(B) denote these referee blocks of a block B.

• customData: A customized field with an arbitrary length list of byte string Hc ∈ (BY∗)∗.
• nonce: A 256-bit value which proves that a sufficient amount of computation has been carried out on this block, formally

Hn ∈ B256.
Formally, a block header is defined as

H = (Hp,Hh,Hs,Hs,Ha,Ht ,Hr,He,Hb,Hm,Hd ,Hw,H`,Ho,Hc,Hn) (36)

The other part of B is simply a list of transactions. Therefore the block B can be represented as follows:

B≡ (BH,BTs) (37)

3.4.1 Transaction Receipt
For convenience and easy verification of the outcome of transaction execution, we introduce transaction receipt to record
certain information of every executed transaction. When updating the deferredStateRoot Hr of a block, we encode a receipt
BR[i] for the i-th executed transaction and store these receipts in an index-keyed trie. This root is recorded in the header as
He ∈ B256.

For every executed transaction T, the receipt R≡
(
Ru,R f ,Rg,Rb,Rl,Rz,Ro,Rs,Ri

)
is a tuple consisting of nine fields:

• Ru ∈ N256 is the cumulative gas used in the epoch where T is executed as of immediately after T has been processed;
• R f ∈ N256 is the gas fee charged for the current transaction.
• Rg ∈ B denotes whether the gas fee is sponsored.
• Rl is the set of logs created in the execution of T;
• Rb ∈ B2048 is the Bloom filter composed from logs in Rl;
• Rz ∈ N is the status code of the transaction T.
• Rs ∈ B denotes whether the storage collateral is sponsored.
• Ro is the set of incremental storage (in bytes) for addresses in the execution of T;
• Ri is the set of decremental storage (in bytes) for addresses in the execution of T;
The sequence Rl ≡ (O0,O1, . . .) ∈

(
B160× (B256)

∗×B∗
)∗ is a series of log entries, where each log entry O is a tuple of the

logger’s address Oa ∈ B160, a possibly empty series of 256-bit log topics Ot ≡
(
Ot0 ,Ot1 , . . .

)
, such that Oti ∈ B256 for every

i ∈ N, and a sequence of data Od ∈ B∗:

O≡ (Oa,Ot,Od) (38)

The Bloom filter function M reduces a log entry into a single 256-byte (2048-bit) hash as follows:

M(O)≡
∨

x∈{Oa}∪Ot

(M3:2048(x)) (39)

where M3:2048 is the specialized Bloom filter that sets three out of 2048 bits to 1 on input of an arbitrary byte sequence, as
formally defined in [3].

The sequence Ro ≡ (P0,P1, . . .) ∈ (B160×B256)
∗ where each entry P is a tuple of an address and the incremental storage

collateral of such address. Ro only collects the addresses with positive incremental storage collateral. It is sorted in ascending
order of addresses and each address only appears once. Ri has the same settings as Ro.
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3.4.2 Serialization
The function LB and LH are the preparation functions for a block and block header respectively (similar as LT defined in
eq. (35)), where we recall that L∗T and L∗H refer to element-wise sequence transformations. We assert the types and order of the
structure when the RLP transformation is required:

LH(H)≡ (Hp,Hh,Hs,Hs,Ha,Ht ,Hr,He,Hb,Hm,Hd ,Hw,H`,Ho,Hc[0], · · · ,Hc[−1],Hn) (40)
LB(B)≡ (LH(BH),L

∗
T(BTs)) (41)

In addition, we let LO be the preparation function for the referee blocks as follows:

LO(H)≡ L∗H(Ho)

The component types are defined thus:

Hp ∈ B256 ∧ Hh ∈ N64 ∧ Hs ∈ N64 ∧ Ha ∈ B160 ∧ Ht ∈ B256

∧ Hr ∈ B256 ∧ He ∈ B256 ∧ Hb ∈ B256 ∧ Hm ∈ N32 ∧ Hd ∈ N256

∧ Hw ∈ B ∧ H` ∈ N256 ∧ Ho ∈ (B256)
≤100 ∧ Hn ∈ B256 (42)

Now we have the specification for the construction of a formal block structure. With the RLP transformation we can further
serialize this structure into a sequence of bytes ready for transmission and storage.

3.4.3 Well-formedness
Every Conflux block B (with header H=H(B)) is well-formed if and only if it is internally consistent and satisfies the following:

Ht = TRIE(∀i < ||BTs||, i ∈ N : (RLP(i),RLP(LT(BTs[i])))) (43)

Intuitively, a block B is well-formed if its header H is consistent with the contents inside B. In other words, H effectively
represents the whole block B.

3.4.4 Block Header Validity
Given a block B with header H = H(B), we decide whether the header H is valid by checking the following fields of H and
comparing to H

(
P(B)

)
and PAST(B) when necessary:

• the height is increased by one;
• the timestamp (in Unix’s time()) is increased;
• the canonical gas limit does not change too much (i.e. more than 1/1024) and it remains above 107;
• the target difficulty is properly set according to Section 9.2;
• the proof-of-work quality exceeds the target difficulty;
• the parent is chosen properly from PAST(B) (the past view of B) following the GHAST rule;
• the adaptive weight flag adaptiveWeight must set properly according to the GHAST rule with respect to PAST(B);
• the referee list refereeHash properly decomposes to block headers.

Formally, the header H is valid if and only if:

Hh = H(P(B))h +1 (44)
∧ Hs > H(P(B))s (45)

∧ |Hl−H(P(B))l |<
⌊

H(P(B))l
1024

⌋
∧ Hl ≥ 107 (46)

∧ Hd is legitimate according to the difficulty adjusting function (47)
∧ QUALITY(H)≥ Hd (48)
∧ P(B) specified by Hp is legitimate according to GHAST rule in PAST(B) (49)
∧ Hw is legitimate according to the GHAST rule in PAST(B) (50)
∧ Ho is well-formed and encodes referee block headers (51)

We remark that the validity of H only matters for consensus of total order of blocks, and it does not rely on the correctness of
the execution related fields deferredStateRoot, deferredReceiptsRoot, deferredLogsBloomHash and blame of the header,
i.e. Hr,He,Hb and Hm of H respectively. However, being incorrect in these fields may indicate that the author of the block
fails to maintain the state and execute the transactions properly, in which case we still count the contribution of this block to
consensus but the author gets no reward, as discussed in Section 3.4.6 and Section 10.



Conflux Protocol Specification — 13/67

3.4.5 Partially (In)Valid Blocks
We call a block B partially valid if either P(B) is marked as partially valid or its header H = H(B) passes all the assertions as
in Section 3.4.4 except for the following:

• the parent reference P(B) specified by H(B)p is not chosen properly according to the GHAST rule in PAST(B);

• the adaptive weight flag H(B)w is not set properly according to the GHAST rule in PAST(B);

• the target difficulty H(B)d satisfies the threshold condition of difficulty adjustment but it is not calculated properly
according to the GHAST difficulty adjusting function.

A partially valid block may not be referenced by honest blocks in several hours after it is released. When a block becomes
old and loses the ability to influence the pivot chain, we do not care about whether a block is partially valid or not. See
Section 4.1 for details. Once a partially valid block is accepted, then it is treated as a fully valid block except for the decision of
timer chain (Section 4.2.1).

We note that as long as the target difficulty is legitimate and the proof of work is valid, the partially valid block can still
contribute to the throughput. This is because we allow referencing partially valid blocks and the transactions inside will be
processed as in any fully valid block. We further remark that since the producer of a partially valid block is entitled to no
reward, transaction fees may be burnt in case these transactions are only collected in partially valid blocks.

3.4.6 Blaming Mechanism
The blame field is introduced for easy verification of states by light nodes. Intuitively, this field represents the vote to the latest
ancestor block which commits to a correct state, i.e. the author of the current block agrees with the committed state (represented
in deferredStateRoot, deferredReceiptsRoot, deferredLogsBloomHash, and blame) of that block. We emphasize that these
fields are not checked for validity of a block, however, committing to an incorrect state may lead to loss of block reward.

More specifically, H(B)m should be set to the minimum non-negative number such that P(H(B)m+1)(B) is correct on all
the four fields of deferredStateRoot, deferredReceiptsRoot, deferredLogsBloomHash, and blame. For example, H(B)m
should be 1 if P(B) is incorrect in H(P(B))r,H(P(B))e,H(P(B))b or H(P(B))m while P(2)(B) is correct in these fields.

Then, in the current block B’s view, all blocks in between of B and P(H(B)m+1)(B), i.e. P(B), · · · ,P(H(B)m)(B), are
committing to incorrect states, for which we say that those blocks are (directly) blamed by B. Furthermore, since B agrees with
the state committed in P(H(B)m+1)(B), the blocks blamed by P(H(B)m+1)(B) is also (indirectly) blamed by B, and recursively we
can determine all the blocks on CHAIN(B) that are blamed by the newest block B.

For blocks off CHAIN(B) (which is indeed the pivot chain in PAST(B) as long as B is valid), we do a best effort test to
decide whether they are blamed by B. More precisely, every block B′ must have determined a set of blocks blamed by B′

along CHAIN(B′), and B′ is blamed by B if they do not agree on exactly the same set of blamed blocks in the intersection
CHAIN(B)

⋂
CHAIN(B′). We remark that no further check is applied on the execution related fields B′r,B

′
e,B
′
b of B′ as long as

B′ is off the current pivot chain.
Thus we have determined for every block B′ whether it is blamed by any other block B. The punishment for blamed blocks

(in particular, those blamed by the latest block on the pivot chain) is specified in Section 10.
In addition, the fields of state commitments, i.e. deferredStateRoot, deferredReceiptsRoot, deferredLogsBloomHash,

would be handled differently when being blamed, as briefly described at the beginning of Section 3.4. That is, if Hm > 0 and
the those fields are blamed, then the commitment will be a Keccak hash of the vector consisting of the correct commitments.
For example, if a block B has H(B)m = 2 such that P(B),P(2)(B) are blamed but P(3)(B) is not, then the deferredStateRoot
field H(B)r of block B would be

H(B)r = KEC
(

CorrectDeferredStateRoot(B),CorrectDeferredStateRoot
(
P(B)

)
,CorrectDeferredStateRoot(P(2)(B)))

(52)

where CorrectDeferredStateRoot(·) is the function that returns the correct value of the deferred state root, which is a 256-bit
Keccak hash, that should be filled in the given block. Note that 1) RLP serialization is not used in the vector since each element
has fixed length, and 2) the vector length only depends on the blame field, regardless of correctness of individual fields in
blamed blocks. Similar rules apply to deferredReceiptsRoot and deferredLogsBloomHash, i.e. H(B)e and H(B)b.

4. Consensus
The consensus rules in Conflux are designed to make decision on two questions: the first is that whether a block is valid and
should be added to the Conflux blockchain; the other is that in what order those valid blocks should be processed.
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In an overview, the Conflux consensus protocol optimistically accepts all formally correct blocks and organizes them as a
Tree-Graph (instead of a tree or a chain), and then specifies a total order of blocks in the Tree-Graph following the GHAST
rule. This total order will be agreed by all honest participants and it is hard to change (under reasonable assumptions). After
fixing such an order, transactions inside blocks are executed accordingly, and invalid transactions, which can be duplicating or
conflicting previously processed transactions, are ignored.

4.1 Validation of Blocks
A set of Conflux blocks form a Tree-Graph structure where each vertex in the Tree-Graph represents a Conflux block and each
directed edge in the Tree-Graph corresponds to a parent or referee reference. Every full node maintains a Tree-Graph structure
of accepted blocks, which are blocks that are valid in the node’s local view. Whenever receiving a new block, the full node
verifies whether the block is valid before adding it into the Tree-Graph.

The validation of a new block can result in four outcomes:

• suspending: the block B is partially valid and TimerDis(B;G)< 240. (TimerDis(·) is defined later in eq. (54) and G
denotes the current Tree-Graph.) The status of block B will be checked again each time a new valid (or partially valid)
block appears in the future set of B.

• accept: the block is valid (either fully valid or partially valid but not suspending anymore) and will be added to the
Tree-Graph immediately.

• reject: the block is clearly invalid and will be discarded.

• pending: the block references some blocks not in the current Tree-Graph. Such blocks will be checked again once all
the referenced blocks have been added to the Tree-Graph.

Given a new block B that is no longer suspending, the validation of B is done in the following steps:

1. Header Validation. This step asserts that B has a valid header (or at least a partially valid one) following Section 3.4.4
and 3.4.5. Note that a Proof-of-Work Validation of B is embedded inside the Header Validation, where the solution
to the PoW puzzle is verified w.r.t. the legitimate target difficulty H(B)d . The canonical gas limit H(B)` is also checked
here, i.e. H(B)` ∈

(
1± 1

1024

)
×H(P(B))` and H(B)` ≥ 5000 as in (46).

The Proof-of-Work Validation is the major mechanism against Sybil attacks and should be performed before invoking
more expensive steps of verification and execution. It is interchangeable with other steps of the validation for better
efficiency; and it will be performed last and repeatedly when mining a new block.

2. Referee Validation. The validation of referee headers asserts that B only references existing valid blocks. In case the
new block references the head of an unknown block, it is marked as pending until all its referee blocks have been added
to the Tree-Graph. The node is suggested (but not forced) to query its neighbors about the referenced unknown block.

3. Volume Validtion. The size of block body must not exceed 200 KB. Formally, ∑T∈BTs
|RLP(T)| ≤ 204800.

4. Internal Consistency. This step asserts that B is self-consistent. More specifically:

• the block header BH is formally consistent with content in BTs, i.e. BH is well-formed following Section 3.4.3;
• every transaction T ∈ BTs is locally legitimate, which is the first test of the intrinsic validity of transactions:

(a) T is well-formed RLP with no trailing bytes;
(b) T has a valid signature by its sender S(T);
(c) T has correct chain id Tc = 2;
(d) the gasLimit Tg is no smaller than the intrinsic gas g0, where

g0 ≡ ∑
i∈Ti,Td

{
Gtxdatazero if i = 0
Gtxdatanonzero otherwise

+

{
Gtxcreate if Ta =∅
0 otherwise

+Gtransaction (53)

• the total gas consumption does not exceed the block gas limit, i.e. ∑T∈BTs
Tg ≤ BH`

.



Conflux Protocol Specification — 15/67

5. If B passes all above steps, then it is marked accept and added into the Tree-Graph structure, otherwise it is marked
reject and discarded.

Note that because a valid block must pass all the above validation steps and there is no jump or loop, all validation steps are
interchangeable and parallelizable.

We emphasize an important difference of Conflux from other blockchains in validating blocks: in Conflux we check the
validity of each transaction locally, i.e. at this moment we do not care if it is a duplicate of some processed transaction or the
sender has insufficient balance. Thus a block B being valid does not imply that all transactions in BTs are valid or will be
eventually executed. The validation of transactions in BTs will be deferred to the finalization of B.

4.2 Total Order in the Tree-Graph
Every Conflux full node maintains a Tree-Graph structure of accepted blocks, and now we discuss how to decide the total order
of all accepted blocks.

Recall that in the Tree-Graph each vertex represents a Conflux block and each directed edge represents the reference of
another block. The vertex for the genesis block has no outgoing edges, since the genesis block does not reference any other
block. Other than the genesis block, each block has exactly one parent reference and possibly multiple (can be zero) referee
references, represented by multiple outgoing edges from the corresponding vertex. This directed graph is acyclic since every
directed edge reflects a clear chronological order of blocks, unless the referenced block is generated using a hash collision.
Based on this Tree-Graph structure the Conflux consensus will first select a pivot chain that defines order of blocks on the chain,
and then extend to the total order of all blocks.

4.2.1 GHAST and Weight Adaption on the Tree-Graph
In Conflux the valid blocks may have heterogeneous weights, even if there is no difficulty adjustment. This feature is introduced
to improve the liveness guarantee in case a divergence of computing power (which is also the block generation power) happens,
either by chance or caused by an active attack.

At a high level, the GHAST rule defines block weight as follows:

• In the usual case, all valid blocks have homogeneous weight. That is, every block with a proof of work satisfying the
target difficulty of the epoch it belongs to would have the same weight, say weight 1.

• When a divergence of block generation power is observed, the distribution of block weights is changed adaptively:

– A small fraction of blocks are marked as “heavy blocks” and given a greater weight. In particular, if the attached
proof of work of a block has difficulty at least 250 times of the epoch’s normal target difficulty, then this block is
called a heavy block and its weight is also 250 times of a usual block, so as its base award.

– Other blocks under this circumstance are still valid as long as the attached proof of work satisfies the normal target
difficulty. But they have zero weight when making consensus decisions.

– When the divergence is resolved, the weight distribution resumes to the usual case, where every block with a valid
proof of work has the same weight as target difficulty of the epoch.

To be more specific, we remark that the GHAST rule only considers blocks in recent eras, e.g. the choice of parent edge
is defined and validated within the subtree of the corresponding era genesis. See Section 4.3 for more details about era and
checkpoints.

Timer Chain Conflux introduces the notion of timer block and timer chain as a robust estimation of elapsed time. Intuitively
the timer chain is the longest chain that would be generated if the block generation were slow, or equivalently only high quality
blocks were considered.

Every fully valid block B with quality QUALITY(B)≥ 180 ·Bd is called a timer block. The partial order of timer blocks
can be deduced from the Tree-Graph of all blocks, which then determines the longest chain of timer blocks, called the timer
chain. More specifically, the genesis block is also genesis of the timer chain, and the “parent timer block” of every timer block
B is recursively defined by choosing the tip of timer chain in PAST(B). For convenience, the parent timer block of B is denoted
by Ptimer(B).

For convenience the timer chain in Tree-Graph G is denoted by TimerChain(G), and the difference of timer blocks in two
Tree-Graphs G and G′ is denoted by TimerDis(G,G′) as follows

TimerDis(G,G′)≡
∣∣TimerChain(G)\G′

∣∣ (54)

The timer block difference TimerDis(G,G′) provides an estimate of the time difference between two local views G and G′.
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Triggering Condition of Adaptive Weight Intuitively, a block B should apply the adaptive weight rule if any previous pivot
block (on CHAIN(B)) fails to receive support from a clear majority of computing power, i.e. the nemesis pivot block does not
accumulate enough weight under its subtree after a sufficiently long time.

Formally, a block B is an adaptive block, denoted by Adaptive(B) = True, if there exists B′ ∈ CHAIN(B) satisfying both of
the following conditions:

1. TimerDis
(
PAST(B),PAST

(
P(B′)

))
≥ 240;

2. SubTW
(
B′;PAST(B)

)
−
(
SubTW

(
P(B′);PAST(B)

)
−SubTW

(
B′;PAST(B)

)
−Weight

(
P(B′)

))
< 1000 ·Bd ,

where SubTW(A;G) denotes the total weight of the sub-tree rooted at A in graph G, and Weight(·) is the adaptive
weight function as defined in (55).

Otherwise the block B is a non-adaptive block and denoted by Adaptive(B) = False. The adaptive weight mechanism is
only triggered for adaptive blocks.

Adaptive Block Weight Recalling that PoW(·) denotes the proof-of-work function and Bd denotes the target difficulty of B,
the GHAST rule formally defines the weight of a block B as follows:

Weight(B)≡


Bd if ¬ Adaptive(B)
0 if Adaptive(B) ∧ 250 ·PoW(BH) ·Bd > 2256 (i.e. QUALITY(B)< 250 ·Bd)
250 ·Bd if Adaptive(B) ∧ 250 ·PoW(BH) ·Bd ≤ 2256 (i.e. QUALITY(B)≥ 250 ·Bd)

(55)

We remark that whether a block B should be adaptive or not is fully determined by PAST(B), which is indeed specified by
B through directly and indirectly referenced blocks. Therefore it is not necessary to put a specific flag in the header of B for
this condition, unless for efficiency concerns.

4.2.2 The GHAST Rule for Selecting the Pivot Chain
Since every block (except the genesis block) has exactly one parent, all parent edges in the Tree-Graph together form a parental
tree with the genesis block being the root. In the parental tree, Conflux applies the GHAST rule to select a chain from the
genesis block to one of the leaf blocks as the pivot chain, where blocks on the pivot chain are called pivot blocks and other
blocks called off-pivot blocks.

In Conflux the pivot chain is not necessarily the longest chain or the “heaviest” chain. Indeed, the GHAST rule requires that
the pivot chain should proceed to the branch whose subtree has greatest total weight (after weight adaption), in case there are
multiple child blocks to choose. The Conflux selection algorithm starts from the genesis block. At each step, it computes the
accumulated total weight of each child subtree in the parental tree and advances to the child block whose subtree has the largest
total weight, until it reaches a leaf block in the local Tree-Graph.

The total weight of a subtree rooted at block B is denoted by Bt and defined recursively as:

Bt ≡ Bd + ∑
B′:P(B′)=B

B′t (56)

where Bd ≡ H(B)d denotes the target difficulty of B, and P
(
B′
)

is the parent block of B′ (hence the summation is taken over
B’s children). Note that Bt is not a part of the block B – indeed it describes a state of B in the local view and may increase as
more subsequent blocks are included afterwards.

We further remark that the total weight of every subtree can be computed from all block headers, since a block header
contains the block difficulty as well as its parent and referees, which suffices to decide the weight of this block as in Section 4.2.1
and hence the total subtree weight recursively. As a result, the whole pivot chain can be determined by the block headers.

The advantage of the GHAST rule is that it guarantees the irreversibility of the selected pivot chain even if honest nodes
fork because of network delays or other reasons. This is because forked blocks also contribute to the safety of the pivot chain
(indeed, this property is inherited from GHOST rule, c.f. [1]).

For example, consider the local view as in Figure 1 and for simplicity suppose that all blocks have equal weight. Conflux
would select Genesis, A, C, E, and H as pivot blocks. Note that they do not form the longest chain in the parental tree – the
longest chain is Genesis, B, F, J, I, and K. Conflux does not select that longest chain because the subtree of A contains more
blocks (and hence more total amount of computation) than the subtree of B. Therefore, the chain selection algorithm selects A
over B at its first step.
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A
Tx2: X sends 8 to Y

H

D

C E

F J I K

Genesis
Tx0: Mint 10 coin to X
Tx1: Mint 10 coin to Z

B
Tx3: X sends 8 to Z
Tx4: Z sends 8 to Y

G
Tx4: Z sends 8 to Y

Besides Genesis, A, B, G, other 
blocks contain no transaction.

Epoch of Genesis Epoch of A Epoch of C Epoch of E Epoch of H

New Block

Parent edge:
Ref. edge:

Figure 1. An example local Tree-Graph state to illustrate the consensus algorithm of Conflux. The yellow blocks are on the
pivot chain in the Tree-Graph. Each block on the pivot chain forms a new epoch to partition blocks in the Tree-Graph.

4.2.3 Epoch
Given the pivot chain in a Tree-Graph, Conflux splits all blocks into epochs as follows:
• Every pivot block B is at epoch H(B)h, or simply the epoch of B, which is denoted by EPOCH(B). In particular the

genesis block is at epoch 0.
• Every off-pivot block B′ is at the epoch of the first pivot block B that references it, directly or indirectly. That is, every

block B′ ∈ U(B) is at the epoch of B; then every block B′′ referenced by B′, i.e. B′′ ∈ U(B′)∪
{
P
(
B′
)}

, if not already
included in an earlier epoch, is also at the epoch of B; and recursively all blocks referenced by B′′ and so on.

In other words, the epoch of B consists of all blocks within the local view of B, such that there blocks are potentially
produced after P(B) but clearly before B. For example, each of the pivot blocks Genesis, A, C, E, and H corresponds to one
individual epoch in Figure 1. The block J belongs to the epoch of H but not the epoch of E, because J is reachable from H but
not reachable from the previous pivot block E.

It is clear from the definition that as long as the pivot chain is not reverted, the partition of epochs cannot be changed.

Epoch capacity Each epoch now has a limit of executing 200 blocks. When a single epoch contains more than 200 blocks,
Conflux will only execute the last 200 blocks (as specified in Section 4.2.4) in that epoch. This limit is introduced to battle DoS
attacks about releasing a lot of blocks suddenly.

4.2.4 Total Order of Blocks
Conflux extends the total order of pivot blocks to all blocks in a Tree-Graph as follows. Conflux first sorts blocks according to
their corresponding epochs, so that a block in an earlier epoch always precedes another block in a later epoch; and then Conflux
sorts the blocks inside each epoch based on their topological order, i.e. corresponding to the partial order implied by referee
references. In case two blocks have no partial order relation, Conflux breaks ties deterministically with the unique ids of these
two blocks. More detailed rules are described with codes in Figure 2.

Input : A block B and the local Tree-Graph G (with B in G and G is the genesis block of G)
Output :A list of blocks L = B1 ◦B2 ◦ . . .◦Bn, where B1, . . . ,Bn are blocks in G, and in particular B1 = G and Bn = B.

A list of pivot blocks P = B′1 ◦B′2 ◦ · · · ◦B′m where B′1, · · · ,B′m are pivot blocks and in particular B′1 = G and B′m = B.
1 B′←− P(B)
2 if B′ =⊥ then
3 return (B,B)

4 (L,P)←− ConfluxOrder(B′;G)
5 L′←− An empty list
6 ∆←− PAST(B)\

(
PAST(B′)∪

{
B′
})

7 while ∆ 6=∅ do
8 ∆′←−∆\(∪A∈∆PAST(A))
9 B′′←− argmaxA∈∆′{Hash(A)}

10 L′←− B′′ ◦L′
11 ∆←−∆\

{
B′′
}

12 L←− L◦L′ ◦B
13 P←− P◦B
14 return (L,P)

Figure 2. The Definition of the ConfluxOrder function.
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For example, the local Tree-Graph in Figure 1 may give a total order as Genesis, A, B, C, D, F, E, G, J, I, H, and K. The
order of D and F may change if the block id of F is smaller than D, and the same holds for G, J, and I.

Here we remark that the weight of blocks is not used when extending the pivot chain to the total order of all blocks. All
blocks, even blocks with zero weight after adaption, are treated equally in this procedure.

4.2.5 Total Order of Transactions
Conflux first sorts transactions based on the relative order of their enclosing blocks. In case two transactions belong to the same
block, Conflux sorts them based on their appearance order in that block. Conflux checks conflicts of transactions at the same
time when deriving the orders. If two transactions are conflicting with each other, e.g. they have exactly the same sender and
nonce, then Conflux will attempt to execute the first one and ignore the second one if the first one is executed. If one transaction
appears in multiple blocks, Conflux will keep the first valid appearance of this transaction and discard all redundant ones.

For example, the transaction total order in Figure 1 is Tx0, Tx1, Tx2, Tx3, Tx4, and Tx4, where Conflux discards Tx3
because it conflicts with a previously executed valid transaction Tx2, and discards the second appearance of Tx4 because it is
redundant.

4.3 Checkpoint
Conflux implements a checkpoint mechanism to tailor the ever-growing blockchain history data. At a high level, every 50000
epochs form an era3 and a checkpoint is made when the era genesis block becomes stable. Thereafter, full nodes can safely
discard the content of old blocks.

4.3.1 Era and Era Genesis
Formally, eras in Conflux are partitioned with respect to the height of pivot blocks. Every 50000 height corresponds to one era,
and in particular the pivot block of height 50000 ·N is called the era genesis block of Era N. For example, the genesis block,
which is the only block at height 0, is the era genesis block of Era 0 (i.e. the first era); the pivot block at height 50000 is the era
genesis block of Era 1 (i.e. the second era). Furthermore, an era genesis will eventually be finalized and become a stable era
genesis, which is irreversible in any case.

The stable era geneses are recursively defined as below:

1. The genesis block is the first stable era genesis.

2. An era genesis block G becomes a stable era genesis if it satisfies the following:

• G is in the subtree of the last stable era genesis;
• the subtree of G contains 240 consecutive timer blocks ended by B, i.e. ∃B such that B,Ptimer(B), . . . ,P

(239)
timer (B)

are all in the subtree of G;
• there are 240 consecutive timer blocks in the future of B (these blocks are not necessarily within the subtree of G).

3. Era genesis blocks preceding a stable era genesis are also stable.

Let the latest stable era genesis block of a Tree-Graph G be denoted by StableEraGenesis(G). The GHAST rule, in-
cluding weight adaption and parent selection (as specified in Section 4.2.1 and 4.2.2), are applied within the subtree of
StableEraGenesis(G). The anti-cone penalty, as defined in Section 10.1.1, is also subject to blocks within the subtree of
StableEraGenesis(G), though such restriction makes no essential difference according to current anti-cone parameters.

4.3.2 Truncation of Consensus Tree-Graph
In a Tree-Graph G, the latest stable era genesis StableEraGenesis(G) is indeed a checkpoint that can be treated as the “new
genesis block” thereafter, since the consensus rules only apply to blocks within the subtree of StableEraGenesis(G). Therefore,
the bodies of blocks in PAST(StableEraGenesis(G)) are no longer needed for future world-states and can be safely discarded
from every full node’s memory. However, the headers of those blocks in PAST(StableEraGenesis(G)) are still needed for
validation of references from future blocks (blocks outside the future set FUTURE(StableEraGenesis(G);G) may reference
blocks in PAST(StableEraGenesis(G))).

For convenience we let B′ and B′′ denote the latest two stable era geneses as follows:

B′ ≡ StableEraGenesis(G)

B′′ ≡ StableEraGenesis(PAST(B′))

Blocks missing one stable era genesis, i.e. the blocks in FUTURE(B′′;G)\FUTURE(B′;G), can be referenced by a
new block in G but will not affect consensus decision. Blocks missing two stable era geneses, i.e. the blocks outside

3In geologic time scale, eons are divided into eras, which are in turn divided into periods, epochs and ages.
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FUTURE(B′′;G), cannot be referenced. More specifically, when adding a new block B into the Tree-Graph G, the validity of
B is examined as follows:

1. If B /∈ FUTURE(B′′;G), then B is discarded.

2. If B ∈ FUTURE(B′′;G)\FUTURE(B′;G), then B is partially valid. That is, the block B has zero weight in consensus
decision and should not be referenced, but the transactions in BTs are still valid.

3. If B ∈ FUTURE(B′;G) but P(B) /∈ SubTree(B′′;G), then B is also partially valid.

4. Otherwise follow the rules in Section 3.4.5.

4.4 Finalization
In this part we discuss when a block or a transaction in Conflux is considered irreversible, or “finalized”. This is crucial for
off-chain users to decide when to confirm a transaction or a state.

Like every other PoW consensus system, the risk that an adversary succeeds in reverting the blockchain history decreases
over time but never goes to zero. That is, there is always a positive probability, no matter how tiny it is, that an adversary
generates a branch with higher accumulated weight than the one generated by honest parties. This is a nature of PoW consensus
but not one weakness, because: 1) a sufficiently small probability is usually considered equivalent to zero in practice; 2) that
tiny probability can be made even smaller than the probability that an adversary breaks the public-key cryptosystem or finds a
collision of the hash reference, and hence not the bottleneck of security. Therefore, in order to decide the concrete finalization
rule, a user must specify how much risk he can tolerate as well as his (perhaps subjective) assumption about several system
parameters.

In what follows we elaborate the finalization of a block. A transaction T is finalized if the first block B′ where T is executed
becomes finalized. This is a sufficient but sometimes not necessary condition4. Note that “the first block including T becomes
finalized” is insufficient, since Conflux allows invalid transactions.

Consider the block B′ in a Tree-Graph and suppose that B′ belongs to the epoch of a pivot block B. Then the finalization of
B′ reduces to the finalization of B on the pivot chain. The user can decide whether B is finalized as follows:

1. Estimate or make assumptions about following system parameters:

• Block Generation Rate: Let q≡ λa/λh where λh denotes the combined block generation rate of honest nodes and
λa denotes the block generation rate of attacker. The user needs to make an assumption of the attacker’s power by
setting an upper bound for q.
• Network Synchronization: If at time t, an honest node broadcasts a block via the gossip network, then by time

t + d all honest nodes receive this block (the nodes not receiving by time t + d will be counted as adversary).
According to our experiment in a globally distributed testing environment, we set d equal to 10 seconds.

2. Make sure that all the pivot blocks preceding B have been finalized.

3. Make sure that block B stays on the pivot chain since 2d time ago.

4. For q≤ 0.2, compute the confirmation risk r1 according to the Fast Confirmation Rule.

• The fast confirmation rule assumes that the GHAST weight adaption is not triggered under the subtree of P(B)
during the generation of 8000 blocks (≈ 1.1 hours) since the creation of P(B).
• Let r2 denote the risk that an attacker breaks the above assumption.

5. For q < 1, compute the confirmation risk r3 according to the Slow Confirmation Rule.

6. The confirmation risk for B is bounded as Risk(B)≤min{r1 + r2,r3}.

4.4.1 Fast/Slow Confirmation Rules
Since evaluating Risk(B) may be costly, we provide the following simple (but not tight) formulas for risk estimation. These
estimations are conservative and hence result in a longer confirmation time. Users, especially those who are also developers,
are encouraged to make more accurate estimation and design sophisticated strategies to achieve a better balance between
confirmation time and security.

For the estimation of confirmation risk, we introduce the following values with respect to the current local Tree-Graph G
and any block A ∈G.

4The finalization of a transaction may be much faster. For example, a simple transaction T may be safely confirmed before the blocks containing T being
finalized, if the execution of T is indifferent of the agreement of pivot chain, i.e. no conflicting or dependent transactions of T included in competing blocks.
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• c0: the total weight of all blocks locally observable in G;
• c1: the total weight of received blocks in the past 2d time (in local clock);
• d : the largest target difficulty in the last one day (in local clock);
• w1(A): the total weight of blocks under the subtree rooted at A in G, i.e. w1(A)≡ ∑A′∈G:A∈CHAIN(A′)Weight(A′);
• w2(A): the maximum weight of subtrees rooted at blocks in SIBLING(A), i.e. w2(A)≡maxA′∈SIBLING(A)

{
w1(A′)

}
(here malicious blocks can be excluded for better performance, while failing to exclude malicious blocks would result in
a correct but more conservative (less accurate) estimation for the upper bound of confirmation risk);

• w3(A): the total weight of all the blocks in PAST(A), i.e. w3(A)≡ ∑A′∈PAST(A)Weight(A′).
Then we let n be the estimation of B’s advantage over its siblings, and m denote the total (equivalent) number of blocks

competing with B, where n and m are formally defined as below:

n≡ d(w1(B)−w2(B)− c1)/de, m≡ b(c0−w3(P(B)))/dc (57)

If n approaches m quickly then it must be the case that most of the mining power are concentrating under the subtree of B,
in which case the block B can be finalized using the Fast Confirmation Rule. However, it is possible that the Fast Confirmation
Rule is never satisfied for a predetermined risk tolerance in case the convergence of mining power is not that timely. Then the
confirmation of B has to rely on the Slow Confirmation Rule, which takes time but will eventually come true as long as the
majority of mining power is honest.

Table 1. The confirmation risk lookup table for Fast Confirmation Rule.

Risk tolerance \ Adversary power q≤ 0.1 (i.e. 9.1% adversary) q≤ 0.2 (i.e. 16.7% adversary)

Risk(B)< 10−4 m−n≤min{0.85m−12,4400}∗ m−n≤min{0.75m−22,2250}
Risk(B)< 10−6 m−n≤min{0.80m−12,3800} m−n≤min{0.70m−22,1500}
Risk(B)< 10−8 m−n≤min{0.75m−12,3200} m−n≤min{0.65m−22,750}
∗ Slightly better security than confirmation with 6 successive blocks in Bitcoin.

Table 2. The confirmation risk lookup table for Slow Confirmation Rule.

Risk tolerance \ Adversary power q≤ 0.25 (i.e. 20% adversary) q≤ 0.5 (i.e. 33.3% adversary)

Risk(B)< 10−4 m−n≤ 0.6m−5700† m−n≤ 0.35m−10900
Risk(B)< 10−6 m−n≤ 0.6m−7200 m−n≤ 0.35m−13600
Risk(B)< 10−8 m−n≤ 0.6m−8700 m−n≤ 0.35m−16200

† Security equivalent to confirmation with 13∼ 14 successive blocks in Bitcoin.

Safety of Fast Confirmation Rule. Now we upper bound the risk r2 that the GHAST weight adaption is triggered within
8000 successive blocks since the generation of P(B).

Let h be the height of the latest stable era genesis block in the current Tree-Graph G. Let Bi denote the block at height h+ i
on CHAIN(B). Let ψ be an arbitrary positive integer (e.g. ψ = 50). For integer j ∈ N, let m′ and m j,n j be defined as follows:

m′ ≡ b(c0−w3(P(B)))/dc (58)
n j ≡ d(w1(B( j+1)·ψ)−maxi∈( j·ψ,( j+1)·ψ] w2(Bi)− c1)/de−m′ (59)

m j ≡ b(c0−w3(B j·ψ))/dc (60)

Let jmax be the largest integer satisfying TimerDis(G,PAST(B jmax·ψ))≥ 140. For q≤ 0.2, the risk r2 is bounded by

10−7 +
jmax

∑
j=0

10(m j/3−n j)/700+5.3 (61)

5. Blockchain Execution
After determining the total order of blocks, the transactions are executed as if they are packed into sequential blocks on an
Ethereum-like chain.

Blockchain execution is based on a series of ordered blocks L and a subsequence of pivot blocks P output by figure 2. The
pivot blocks divided into L into several epochs. For k ≥ 1, the epoch k (denoted by Ek) refers the slice in L started with the
next block of P[k−1] and ended at block P[k]. The epoch 0 refers the genesis block.
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5.1 Initial state
This sub-section is a deprecated version.

The initialization world state σ0 is set as follows. A list a with elements (a,b) gives the addresses a and their balance b
when the Conflux blockchain launched.

∀(a,b) ∈ a,σ0[a] = α
0 except:αb = b (62)

The global statistic information will be set as follows:

σ
0[astake][k1]v ≡ 63072000×280 (63)

σ
0[astake][k2]v ≡ 63072000×40000 (64)

σ
0[astake][k3]v ≡ 0 (65)

σ
0[astake][k4]v ≡ 0 (66)

σ
0[astake][k5]v ≡∑(a,b)∈a b (67)

where: (68)
astake ≡ 0x0888000000000000000000000000000000000002 (69)

k1 ≡ [accumulate interest rate]ch (70)
k2 ≡ [interest rate]ch (71)
k3 ≡ [total staking tokens]ch (72)
k4 ≡ [total storage tokens]ch (73)
k5 ≡ [total issued tokens]ch (74)

5.2 Epoch execution
The blockchain is executed epoch by epoch started with epoch 1. Let σk−1 denote the world state after the execution of epoch
k−1. The Conflux protocol updates world state from σk−1 to σk as follows. Besides updating the world state, the protocol also
generates a receipt list Rk for epoch execution.

Blocks execution. First, all the blocks in epoch are executed in sequence by block execution function Cblock(σ ,B,L[0..(τ−
1)]) = (σ ′,R′), where B is the block to be executed, τ is the the index of block B in L and R′ is the sequence of transaction
receipts. After executing all the blocks, the resultant world-state σ∗ becomes the input of the next step and the concatenation of
block receipts becomes epoch receipts R. Function Cblock(σ ,B,L) is defined in section 5.3.

Distribute mining reward. Since Conflux incentive mechanism puts off the mining reward distribution for 12 epochs, after
execution of epoch k, Conflux distribute the mining reward for blocks in Ek−12. The computing of mining reward for blocks in
epoch k−12 requires the following context information.
• The epoch block set Ek−12
• The world-state before the execution of all the block B in Ek−12, denoted by σ(B).
• The transaction receipts of all the block B in Ek−12, denoted by R′(B).
• The tree-graph structure for blocks in PAST(P[k−12+10]).
Section 10 describes how to compute the block reward R(B) with the context information. The mining reward will be

distributed to the block author if the author is . The global parameter total issued tokens is updated accordingly. Suppose σ∗ is
the world state after blocks execution, it will be updated to σ∗∗ by

σ
∗∗ ≡ σ

∗ except: (75)
∀a ∈ B160 with Typea ∈ {[0000]2, [0001]2, [1000]2} (76)

σ
∗∗[a]b ≡ σ

∗[a]b +∑B∈Ek−12
I(BHa = a)×R(B) (77)

σ
∗∗[astake]s[k3]≡ σ

∗[astake]s[k3]+∑B∈Ek−12

(
I(TypeBHa

∈ {[0000]2, [0001]2, [1000]2})×R(B)−∑R∈R′(B) R f

)
(78)

where: (79)
astake ≡ 0x0888000000000000000000000000000000000002 (80)

k3 ≡ [total issued tokens]ch (81)
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5.3 Block execution
The block execution function Cblock(σ ,B,L) consists of two steps.

Update accumulate interest

σ
∗ ≡ σ except: (82)

σ
∗[astake]s[k1]≡

⌊
σ [astake]s[k1]×

(
1+

4%
63072000

)⌋
(83)

where: (84)
astake ≡ 0x0888000000000000000000000000000000000002 (85)

k1 ≡ [accumulate interest rate]ch (86)

Execute transactions in block Each block B contains a series of transactions BTs. Start with world state σ∗, Conflux
executes these transactions in sequence by a transform function ϒ(σ ,T,L) = (σ ′,R), which updates world state from σ to
σ ′ by processing transaction T and outputs a receipt R. The input L represents the blocks in front of the present block.After
executing all the transaction, the resultant state σ ′ and the concatenation of all the transaction receipts R′ consists of the output
of function Cblock.

6. Transaction Processing
Conflux implements the same virtual machine as Ethereum [3]. The execution of a transaction defines the transform function
ϒ(σ ,T,L), which is similar with Ethereum’s state transition function.

6.1 Overview
In what follows we focus on the Conflux specific designs in the execution.

Gas and Payment As defined in Section 3.3 every transaction T has two fields of gasLimit and gasPrice that declare the
specific amount of associated gas Tg and the price Tp of per unit gas. When starting the execution of a transaction T, the
purchase of gas happens at the price Tg×Tp and the transaction T is considered invalid if the actor responsible for the cost of
gas consumption cannot afford such a purchase. Normally S(T), the sender of T, is responsible for the cost of gas consumption.
But the gas consumption maybe sponsored by called contract sometimes. (See the following paragraph for details.)

Like in Ethereum, gas does not exist outside the execution of transactions.
The unused gas can be refunded after the transaction T is executed, but no more than a quarter of the total value spent on

purchasing. Thus, the refundable amount of gas g† is the minimum of the legitimately remaining gas g′ and a quarter of the
gasLimit of T, i.e. g† ≡min

{
g′,Tg/4

}
, where in principle no gas is refundable (i.e. g† = g′ = 0) if the execution of T fails

due to the sender’s fault.
The actor who initially purchased the gas for T will get the refund of g†×Tp. And the CFX paid for the consumed gas is(

Tg−g†)×Tp. (87)

If the T is not executed (i.e. only when Rz = 2 as in Section 6.2.1)), no gas will be charged. If the sender S(T) can not afford
gas fee, all its the remained balance of sender S(T) will be charged as gas fee. The actual charged gas fee will be record in
receipt R f .

The charged gas fee is added to the reward pool for miners. Thus in general a higher gas price on a transaction would cost
the sender more but also increase the chance of being processed timely.

In computing the accumulated gas used of the whole block, the non-refundable gas g†−g′ is not taken into consideration.
But in case the sender S(T) can not afford gas fee, the gas used is considered as Tg, even if the actual charged gas fee is less
than Tp×Tg. The gas used is also recorded in receipt Rg. Thus the accumulated gas used of a block is intrinsically taking the
summation of field Rg over transaction receipts.

Storage Limit and Storage Collateral Every transactions also have a filed of storageLimit that declare the maximum
storage bytes T` increasing for the present transaction. Before transaction execution, besides gas fee and transferred value, the
sender S(T) must have enough balance for storage collateral for specified storageLimit, i.e., T`× 1018

1024 Drip. Unlike the gas
fee, these collateral will not be charged or locked at this time. At the end of transaction execution, if the sender doesn’t have
enough balance paying for the increased storage collateral or the increased storage bytes of sender exceeds storage limit, the
transaction execution fails. More details for collateral for storage is specified in section 7.
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Sponsorship In case the transaction T is calling a smart contract C with sponsor for gas and T is qualified for the subsidy
as checked in function Whitelist(·) defined in eq. (261), C is responsible for the purchase of gas if it has sufficient sponsor
balance for gas and the transaction gasLimit Tg does not exceed the sponsor limit for gas, and otherwise the sender S(T) is
still responsible for the whole purchase of gas as if there were no sponsor at all. Formally, we define function GasElig(σ ,T) to
check whether transaction T is eligible for gas consumption sponsorship and define function GasSpr(σ ,T) to check where T is
actually sponsored for gas consumption.

GasElig(σ ,T)≡ TypeTa
= [1000]2 ∧ Whitelist(σ ,S(T),C) ∧ σ [Ta]p[gas]a 6= 0 ∧ Tg×Tp ≤ σ [Ta]p[limit] (88)

GasSpr(σ ,T)≡ GasElig(σ ,T) ∧ σ [Ta]p[gas]b ≥ Tg×Tp (89)

where function Whitelist(·) is defined in eq. (261).
If a contract has sponsor for collateral, the storage collateral can also be sposnored by a contract. Formally,

ColElig(σ ,T)≡ TypeTa
= [1000]2 ∧ Whitelist(σ ,S(T),C) ∧ σ [Ta]p[col]a 6= 0 (90)

ColSpr(σ ,T)≡ ColElig(σ ,T) ∧ σ [Ta]p[col]b ≥ T`×
1018

1024
(91)

6.2 Transaction Execution
6.2.1 Pre-execution Validation
Before being executed, a transaction T in the processing queue must pass the following secondary test of intrinsic validity.

1. The current epoch is in the range specified by epochHeight, i.e. current epoch height is in [Te−100000,Te +100000].
2. The transaction nonce is valid, i.e. Tn = σ [S(T)]n where σ is the current world-state.
3. The recipient address is valid , i.e. the type indicator (first 4-bit) of Ta belongs to {[0000]2, [0001]2, [1000]2}.
Note that the local legality of the transaction, e.g. the RLP format and the validity of signature, is already verified in the

first intrinsic validity test before accepting the corresponding block into the Conflux Tree-Graph, as discussed in Section 4.1,
and will not be checked again at this moment.

If T fails at these checks, the transaction will not be executed, the nonce for account will not increase and no transaction fee
is charged for such transaction. Let R′ be the receipt of last transaction. Then the receipt of current transaction will be set as
follows:

Ru = R′u R f = 0 Rg = 0 Rl = ε Rz = 2 Rs = 0 Ro = ε Ri = ε (92)

(The bloom filter Rb of log Rl is computed accordingly. )
If T passes all the above pre-execution checks, the execution of T is as specified in the rest of this section.

6.2.2 Preprocessing
In the preprocessing phase of T, the balance of S(T) (and the sponsor, if applicable) is examined so that the payment for any
further operation is assured. The world-state will be transformed from σ into σ0 ≡ σ∗∗ if T passes the preprocessing, or directly
into σ ′ and the execution is aborted if T fails at any step.

Nonce incremental. The beginning of execution causes an irrevocable changed to the state σ : the nonce of the sender, S(T)n,
is incremented by one. We define the state σ∗:

σ
∗ ≡ σ except: (93)

σ
∗ [S(T)]n ≡ σ [S(T)]n +1 (94)

Gas consumption payment validation. The up-front payment of a transaction T first figures out whether the gas consumption
is sponsored. T is sponsored on gas consumption if T is eligible for sponsorship on gas consumption and the calling contract
has sufficient sponsor balance for gas fee.

• If the gas consumption of T is sponsored, the world-state σ∗∗ after gas consumption payment is as follows:

σ
∗∗ ≡ σ

∗ except: (95)
σ
∗∗ [Caddr]p [gas]b ≡ σ

∗ [Ia]p [gas]b−Tg×Tp (96)

• Otherwise, the sender S(T) is required to pay for the gas consumption. The balance of S(T) should satisfy σ∗ [S(T)]b ≥
Tg×Tp +Tv and otherwise a not enough balance exception is generated. The handling of not enough balance exception
will be discussed later. The world-state after the gas consumption payment is defined as:

σ
∗∗ ≡ σ

∗ except: (97)

σ
∗∗ [S(T)]b ≡max

{
σ
∗ [S(T)]b−Tg×Tp,0

}
(98)
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Storage limit validation. After charging, Conflux decides who is responsible for storage collateral. If T is eligible for
sponsorship on storage collateral and calling contract C = Ta has enough sponsor balance for collateral, contract C is
responsible for the storage collateral resulted in the execution of T and will be the owner of modified entries. Otherwise, the
sender S(T) is the owner of modified entries and has the obligation to pay corresponding storage collateral.

ColOwner(σ ,T)≡
{

Ta if ColSpr(σ ,T) = True
S(T) if ColSpr(σ ,T) = False

(99)

If S(T) is the storage owner but his balance cannot afford the full collateral as declared in storageLimit after transferring
value Tv, i.e. σ∗∗[S(T)]b < Tv +T`×1018/1024, then the execution of T fails due to not enough balance exception.

Handling not enough balance exception. Whenever the preprocessing of T generates a not enough balance exception
during preprocessing, the execution of T fails and there will be no further execution of T. To figure out whether this exception
caused by the insufficient sponsorship balance in contract, the sender balance before transaction execution (i.e. σ [S(T)]b) is
compared with a minimum required balance defined as

Tv +(1− I(GasElig(σ ,T)))×Tg×Tp +(1− I(ColElig(σ ,T)))×T`×
1018

1024
. (100)

If σ [S(T)]b has enough balance for minimum required balance, the sender S(T) is considered not responsible for the
generated not enough balance exception. In this case, the resultant world-state σ ′ is reverted to σ , the nonce of sender is reset
so that T is reusable. The receipt is composed as follows (where R′ refers the receipt of last transaction):

Ru = R′u R f = 0 Rg = 0 Rl = ε (101)
Rz = 2 Rs = 0 Ro = ε Ri = ε (102)

In other cases, sender S(T) is responsible for the exception. The resultant world-state is σ ′ is reverted to σ∗∗ and the receipt
is composed as follows if sender is non-existent. (i.e. σ [S(T)] 6=∅).

Ru = R′u +Tg R f = min{Tg×Tp,σ [S(T)]b} Rg = GasElig(σ ,T) Rl = ε (103)
Rz = 1 Rs = 0 Ro = ε Ri = ε (104)

If sender S(T) is responsible for the exception and the sender is empty, the resultant world-state is σ ′ is reverted to σ . The
receipt is composed as follows

Ru = R′u R f = 0 Rg = 0 Rl = ε (105)
Rz = 2 Rs = 0 Ro = ε Ri = ε (106)

6.2.3 Execution Substate
The transaction substate A is a three tuple which accrues intermediate information during execution.

A≡ (As,Al,Ac) (107)

The components of A are defined as follows:
• As is the self-destruct set of accounts that will be discarded upon the transaction’s completion.
• Al is the log series consisting of indexable “checkpoints” in the VM code execution, allowing light clients to track the

execution of a contract.
• Ac is the set of key-value pairs for the storage collateral changes for each address. Similar with the world state, we write

Ac[k] =∅ for the case that the key k does not exist and regard Ac[k] =∅ as Ac[k] = 0.
The empty substate A0, which is also the initial substate, has no self-destructs, no logs, no touched accounts, and zero

refund. Formally, A0 is defined as

A0 ≡ (∅,ε,∅) (108)

For any two substate A1 and A2, the accrued substate A≡ A1 dA2 is defined by

As ≡ A1
s ∪A2

s (109)

Al ≡ A1
l ·A2

l (110)

∀a ∈ B160, Ac[a]≡ A1
c [a]+A2

c [a] (111)
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6.2.4 Type dependent execution
If transaction passes the preprocessing, then Conflux evaluates the post-execution provisional state σP from pre-execution
provisional state σ0 depending on the transaction type as specified in Ta: either contract creation or message call. The gas
available for the proceeding computation is g≡ Tg−g0, where g0 is the intrinsic cost of T as in (53).

We define the tuple of post-execution provisional state σP, remaining gas g, accrued substate A and status code z:

(σP,g′,A,z)≡

{
Λ(σ0,S(T),S(T),ε,ColOwner(σ ,T),g,Tp,Tv,Ti,0,ζ ,True) Ta =∅
Θ(σ0,S(T),S(T),Ta,ε,ColOwner(σ ,T),Ta,g,Tp,Tv,Tv,Td,0,True) Ta 6=∅

(112)

Notice that we have three more parameters compared with Ethereum.
The specifications of function Λ and Θ are given in Section 6.3 and Section 6.4 respectively.

6.2.5 Postprocessing
Storage collateral refund and charge. After the message call or contract creation is processed, Conflux checks whether the
incremental storage exceeds storage limit specified in T` and if the storage owner has enough balance for storage collateral.
Let i≡ ColOwner(σ ,T) be the address who owns modified storage entries and v be the available balance to pay for storage
collateral, which is defined as

v≡

{
σP[S(T)]b if ColSpr(σ ,T) = False

σP[Ta]p[col]b if ColSpr(σ ,T) = True
(113)

Notice that Ac[i] is the incremental storage collateral during execution. If Ac[i]> min{v,T`×1018/1024}, then the execution
fails because of not enough balance for collateral or exceeding the storage limit, and all the modified state will be reverted to
σ0, i.e. σ ′ ≡ σ0. Let R′ denote the receipt of last transaction. Then the receipt of current transaction T will be

Ru = R′u +Tg R f = Tg×Tp Rg = GasSpr(σ ,T) Rl = ε (114)
Rz = 1 Rs = ColSpr(σ ,T) Ro = ε Ri = ε (115)

Otherwise Conflux charges and refunds storage collateral and transforms world-state σP into σ∗. We skim the self-
destructed contracts here because their storage collateral have been refunded during self-destruction. The storage collateral in
account state is also updated at this time.

σ
1 ≡ σ

P except: (116)
∀a ∈ B160 with Ac[a] 6= 0, (117){

σ1[a]p[col]b ≡ σP[a]p[col]b + f (a) if a refers to a contract account, i.e. Typea = [1000]2
σ1[a]b ≡ σP[a]b + f (a) if a refers to a normal account, i.e. Typea = [0001]2

(118)

σ
1[a]o ≡ σ

P[a]o− f (a) (119)

σ
1[astake]s[k3]≡ σ

P[astake]s[k3]+ ∑
a∈B160

( f (a)+Ac[a]) (120)

σ
1[astake]s[k4]≡ σ

P[astake]s[k4]+ ∑
a∈B160

Ac[a] (121)

where: (122)
astake ≡ 0x0888000000000000000000000000000000000002 (123)
k3 ≡ [total issued tokens]ch (124)
k4 ≡ [total storage tokens]ch (125)

f (a)≡min{−Ac[a],σP
o [a]} (126)

Gas fee refund. The refundable amount of gas g† is the minimum of the legitimately remaining gas g′ (as calculated in (112))
and a quarter of the gasLimit of T, i.e. g† ≡min

{
g′,Tg/4

}
. The refund of gas fee is applied on world-state σ∗ and results in

σ ′ ≡ ϒ(σ ,T).
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σ
2 ≡ σ

1 except: (127){
σ2 [Ta]p [gas]b ≡ σ1 [Ta]p [gas]b +g†×Tp if GasSpr(σ ,T) = True

σ2 [S(T)]b ≡ σ1 [S(T)]b +g†×Tp if GasSpr(σ ,T) = False
(128)

Killed contract processing The sponsor mechanism and collateral mechanism bring additional tasks in contract destruction.
First, for all the killed contract, we refund the collateral for code and storage entries to the corresponding owner.

σ
3 ≡ σ

2 except: (129)

∀a ∈ As, σ
2[a]s ≡∅ (130)

∀a ∈ B160 with A∗c [a] 6= 0, (131){
σ3[a]p[col]b ≡ σ2[a]p[col]b + f (a) if a refers to a contract account, i.e. Typea = [1000]2
σ3[a]b ≡ σ2[a]b + f (a) if a refers to a normal account, i.e. Typea = [0001]2

(132)

σ
3[a]o ≡ σ

2[a]o− f (a) (133)

σ
3[astake]s[k3]≡ σ

2[astake]s[k3]+ ∑
a∈B160

( f (a)+A∗c [a]) (134)

σ
3[astake]s[k4]≡ σ

2[astake]s[k4]+ ∑
a∈B160

A∗c [a] (135)

A′ ≡ AdA∗ (136)
where: (137)
astake ≡ 0x0888000000000000000000000000000000000002 (138)
k3 ≡ [total issued tokens]ch (139)
k4 ≡ [total storage tokens]ch (140)

f (a)≡min{−A∗c [a],σ
2
o [a]} (141)

A∗ ≡ A0 except: (142)

∀a ∈ B160,A∗[a]c =−
1018

1024
× ∑

a′∈As

(
I(σ2[a′]w = a)×|σ2[a′]p|+ ∑

k∈B∗
I(σ2[a′]s[k]o = a)×64

)
(143)

Then we refund the sponsor balance for all the killed contract.

σ
4 ≡ σ

3 except: (144)

∀a ∈ B160, σ
4[a]b ≡ σ

3[a]b + ∑
a′∈As

(
I(σ3[a′]p[col]a = a)×σ

3[a′]p[col]b + I(σ3[a′]p[gas]a = a)×σ
3[a′]p[gas]b

)
(145)

∀a′ ∈ As, σ
4[a′]p[col]b ≡ 0 (146)

∀a′ ∈ As, σ
4[a′]p[gas]b ≡ 0 (147)

Then we delete all the contracts and burn all the rest balance

σ
′ ≡ σ

4 except: (148)
∀a ∈ As,σ

′[a] =∅ (149)

σ
′[astake]s[k3]≡ σ

4[astake]s[k3]− ∑
a∈As

(σ [a]b +σ [a]t) (150)

where: (151)
astake ≡ 0x0888000000000000000000000000000000000002 (152)
k3 ≡ [total issued tokens]ch (153)

Transaction Receipt. Now the transaction execution is accomplished. The returning status code z denotes whether the
execution succeeds or not. Supposing that R′ is the receipt of last transaction, the receipt of current transaction will be as
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follows:

Ru = R′u +g′ R f = (Tg−g†)×Tp Rg = GasSpr(σ ,T) Rl = A′l

Rz = z Rs =

{
ColSpr(σ ,T) if z = 0
0 if z = 1

Ro = ToList({(a,A′c[a])|a ∈ B160 ∧ Ac[a]> 0})
Ri = ToList({(a,−A′c[a])|a ∈ B160 ∧ Ac[a]< 0})

(154)

6.3 Contract Creation
A number of intrinsic parameters are used when creating a smart contract account:
• world-state σ ;
• sender s;
• original sender o;
• other recipients in call stack t;
• storage owner i;
• available gas g;
• gas price p;
• endowment v;
• initialization code i as an arbitrary length byte array;
• the present depth of message-call/contraction-creation stack e;
• the salt for new account’s address ζ ,

where ζ =∅ if the creation was caused by CREATE, and ζ ∈ B256 if the creation was caused by CREATE2;
• and finally the permission to change the state w.
We define the contract creation function by Λ, which evaluates from the above parameters and modifies the state σ to a new

state σ ′, together with the leftover gas g′, the accrued substate A, the result of creation, and the output o.(
σ
′,g′,A,z,o

)
≡ Λ(σ ,s,o, t, i,g, p,v, i,e,ζ ,w) (155)

The address a of the account α newly created by CREATE is defined as the 4-bit contract type indicator concatenating the
rightmost 156 bits (i.e. the 100-th to 255-th bit) of the Keccak hash of a zero byte, the sender address s, the little-endian 32-byte
array of its account nonce and the Keccak hash of EVM code. For CREATE2 the rule is slightly different by substituting
account nonce with the salt ζ and changing the leading byte before taking Keccak (following EIP-1014). Combining these two
cases, the resultant address for the new contract account α is defined as follows:

a = A(s,σ [s]n−1,ζ , i)≡
{

[1000]2 ◦KEC
(
[00]16 ◦ s ◦ LE32(σ [s]n−1) ◦ KEC(i)

)
[100 . . .255] if ζ =∅

[1000]2 ◦KEC
(
[ff]16 ◦ s ◦ ζ ◦ KEC(i)

)
[100 . . .255] otherwise

(156)

where LE32(·) denotes the function that expands an integer value in [0,2256−1] to a little-endian 32-byte array. Note that we
use σ [s]n−1 since it is indeed the sender’s nonce at the generation of the respective transaction or VM operation.

If σ [a]c 6= KEC(ε), a Contract Address Conflict exception is triggered. Function Λ returns (∅,g,A0,1) immediately.
Otherwise, the account’s nonce is initialized to one, the balance as the value passed by the contract creation transaction,

the storage and code as for the empty string. The sender’s balance is reduced by the transferred value (there must be enough
balance or the transaction will not be executed). Thus the mutated state becomes σ∗:

σ
∗ ≡ σ except: (157)

σ
∗[a]≡ α

0 except: σ
∗[a]n = 1∧σ

∗[a]b = v+σ [a]b∧σ
∗[a]a = o (158)

σ
∗[s]≡

{
∅ if σ [s] =∅ ∧ v = 0
σ [s] except : σ∗[s]b = σ [s]b− v otherwise

(159)

where α0 is the default account specified in eq. (8).
The unmentioned components of an account are initialized by default.
Finally the account α is initialized by EVM code i according to the execution model. Code execution may effect several

events that are not internal to the execution state: the account’s storage can be altered, further accounts can be created and
further messages calls can be made. As such, the code execution function Ξ evaluates to a tuple of resultant state σ∗∗, available
gas remaining g∗∗, the accrued substate A and the body code o.

(σ∗∗,g∗∗,A,o)≡ Ξ(σ∗,g, I) (160)
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where I consists of the parameters of the execution environment as follows:

Ia ≡ a (161)
Io ≡ o (162)
Ii ≡ i (163)
Ip ≡ p (164)
Id ≡ ε (165)
It ≡ t (166)
Is ≡ s (167)
Iv ≡ v (168)
Ib ≡ i (169)
IH ≡ H (170)
IL ≡ L (171)
Ie ≡ e (172)
Iw ≡ w (173)

Id evaluates to the empty tuple as there is no input data to this call. IH is the block header of the present block. IL is the list
of block headers ordered in front of the current block.

Code execution depletes gas, and gas may not go below zero, thus the actual execution may exit before the code has come
to a natural halting state. In this (and several other) exceptional cases (i.e. σ∗∗ =∅∧o =∅), we say an out-of-gas (OOG)
exception has occurred: the evaluated state is set to the empty set ∅, and the entire contract creation should have no effect on
the state, effectively leaving it as it was immediately prior to the attempt of the failed creation. Function Λ returns (∅,g∗∗,A0,1)
immediately.

If the initialization code completes successfully, a final storage cost is charged for depositing the code. The storage cost s is
proportional to the code size of the created contract and it consists of two parts:

• the code-deposit cost d charged as gas consumption:

d ≡ |o|×Gcodedeposit (174)

• a substate A∗ will be generated to record the storage occupied by code size. the code size collateral will be charged in
transaction post processing and will be locked during the lifetime of the created contract. (Conflux will record the owner
of code in world-state and refund the collateral when the contract is destroyed):

A∗ ≡ A0 except: A∗p[i] = |o| (175)

If the remaining gas cannot afford the code-deposit cost (i.e. g∗∗ < d) or the code size exceeds 49152 bytes (i.e. |o|< 49152),
then we also declare that an exception occurs and handle it as a failed contract creation attempt. Function Λ returns (∅,g∗∗,A0,1)
immediately.

If the contract creation fails for any reason, the value of the transaction is not transferred to the aborted contract, and
collateral for storing the code is not locked either. If the contract creation succeeds, we formally specify the resultant state, gas,
storage limit, substate, and status code by (σ ′,g′,A′,z) as follows:

g′ ≡ g∗∗−d (176)
σ
′ ≡ σ

∗∗ except: (177)
σ
′[a]c ≡ KEC(o) (178)

σ
′[a]code ≡ (o, i) (179)

A∗ ≡ A0 except: (180)

Ac[a]≡ |o|×
1018

1024
(181)

A′ ≡ AdA∗ (182)
z≡ 0 (183)
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In the determination of σ ′, the final body code for the newly created account is specified by the byte sequence o derived
from the execution of the initialization code i. The status code z is an indicator of whether the contract creation succeeds.

Therefore the result of contract creation is either a successfully created new contract with its endowment and collateral for
storage, or no new contract and no transfer of value or collateral at all.

Subtleties. Note that while the initialization code is executing, the newly created address exists but with no intrinsic body
code. Thus any message call received by it during this time causes no code to be executed. If the initialization execution ends
with a SUICIDE instruction, the matter is moot since the account will be deleted before the transaction is completed. For a
normal STOP code, or if the code returned is otherwise empty, then the world-state may left with a zombie account. Only the
administrator of such contract can destroy it by calling the internal contract described in section 8.2.

6.4 Message Call
The following intrinsic parameters are used when executing a message call:
• world-state σ ;
• sender s;
• original sender o;
• recipient r;
• other recipients in call stack t
• storage owner i
• the account c whose code is to be executed, usually the same as recipient;
• available gas g;
• gas price p;
• value v;
• input data d of the call, as an arbitrary length byte array;
• the present depth of message-call/contraction-creation stack e;
• and finally the permission to change the state w.
During the execution of message calls, the state and transaction substate may change, and finally an output data array o

will be generated. In case of executing transactions (generated by external controllers) the output data o is ignored, however
message calls (generated by internal execution process) can result further consequences due to the execution of VM-codes,
especially when the message call is generated inside the execution of another message call (or transaction).(

σ
′,g′,A,z,o

)
≡Θ(σ ,s,o,r, t, i,c,g, p,v, ṽ,d,e,w) (184)

Note that we differentiate between the value to be transferred, v, from the value apparent in the execution context, ṽ, for the
DELEGATECALL instruction.

We let σ∗ denote the first transitional world-state, which is the same as the original state except for the value transferred
from sender s to recipient r (if s 6= r):

σ
∗[r]b ≡ σ [r]b + v ∧ σ

∗[s]b ≡ σ [s]b− v (185)

In particular, if σ [r] was undefined in σ , Conflux will treat it as an empty account with address r which has no code or state
and zero balance and nonce. If furthermore the transferred value v is positive, the account will be created and stored in σ∗[r].
Thus the previous equation should be taken to mean:

σ
∗ ≡ σ except: (186)

σ
∗ [s]≡

{
∅ if σ [s] =∅ ∧ v = 0
σ [s] except:σ∗[s]b = σ [s]b− v otherwise

(187)

σ
∗[r]≡


α0 except: σ∗[r]b = v if σ [r] =∅ ∧ v 6= 0
∅ if σ [r] =∅ ∧ v = 0
σ [r] except:σ∗[r]b = σ [r]b + v otherwise

(188)

The recipient’s associated code b, whose Keccak hash is σ [c]c, is executed according to the execution model. Note that the
code b is stored in code component σ [c]code of account c.

Similar as with contract creation, if the execution halts due to an exception, then the state is reverted to the point immediately
prior to balance transfer (i.e. σ ) of the message call but no gas is refunded. The new state σ ′ after executing this message call is
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as follows:

σ
′ ≡

{
σ if σ∗∗ =∅
σ∗∗ otherwise

(189)

g′ ≡

{
0 if σ∗∗ =∅ ∧ o =∅
g∗∗ otherwise

(190)

z≡

{
1 if σ∗∗ =∅
0 otherwise

(191)

where the resultant state σ∗∗ and available gas remaining g∗∗, together with the accrued substate A and the output data o, are
determined by the code execution function Ξ evaluated on state σ∗.

(σ∗∗,g∗∗,A,o)≡ Ξ(σ∗,g, I) (192)

where I contains the parameters of the execution environment as follows:

Ia ≡ r (193)
Io ≡ o (194)
Ii ≡ i (195)
Ip ≡ p (196)
Id ≡ d (197)
It ≡ t (198)
Is ≡ s (199)
Iv ≡ ṽ (200)
Ib ≡ b (201)
IH ≡ H (202)
IL ≡ L (203)
Ie ≡ e (204)
Iw ≡ w (205)

For the frequently used functionalities such as the elliptic curve public key recovery, the SHA2-256 hash scheme, and so
on, we set up eight “precompiled computation contracts” with reserved code’s address c ∈ {1,2, . . . ,8} (with type indicator
[0000]2). The precompiled computation contracts have no side-effect during execution. They will not generate logs, modify
accounts’ storage or trigger another message call. In the present implementation of Conflux these exceptional contracts are
specified as in the latest version of Ethereum [3].

Conflux also introduces internal contracts for specific usage. A high-level description for the internal contracts is given
in Section 8. When the recipient’s address r is one of the internal contracts, Conflux processes Ξinternal(σ

∗,g, I) and returns
(σ∗∗,g∗∗,A,o). A formal definition is given in section G.

6.5 Execution Model
The execution model specifies the system state transition on input of a sequence of bytecode instructions and a small tuple of
environmental data. The state transition function is formalized as a virtual state machine, which is Turing-complete except that
its running time and storage space are intrinsically bounded by the limited amount of available gas and collateral for storage.
For this moment we implement the well-known Ethereum Virtual Machine (EVM), and the execution model follows [3].

6.5.1 Basics
The EVM is a stack-based architecture with 256-bit word size. The stack has a maximum size of 1024 words. The memory
model is a simple word-addressed byte array. The machine also has an independent storage model which is a word-addressable
word array (rather than byte array for the memory). The memory is volatile and storage is steady and maintained as part of
the system state. All locations in both memory and storage are initialized as zero. The program code is stored separately in a
virtual ROM that is only interactable via specific instructions.

The execution of the virtual machine may reach exceptions for various reasons, including stack underflows/overflow, invalid
instruction, invalid jump destination, out-of-gas and so on. Like the out-of-gas exception, the machine halts immediately and
throws an exception to the execution agent, either the transaction processor or recursively the spawning execution environment,
which will catch and deal with it separately.
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6.5.2 Gas Consumption
The cost of execution, aka. gas, is charged under following circumstances:

1. the execution of instructions, where each type of instructions is assigned an intrinsic amount of gas;
2. the generation of subordinate message call or contract creation.

6.5.3 Storage Consumption
Conflux requires a fixed amount of fund, i.e. 1/16 CFX, locked as collateral during the whole lifetime of each 64B storage
entry in the world-state. This fund is locked when the entry is created, and is unlocked and returned to the owner when that
entry is cleared or overwritten by someone else eventually, as described in Section 7. The interest generated by the collateral is
paid to miners as specified in Section 10.2. Thus the cost of storing an entry is proportional to the time length of storage usage.

The owner of the collateral of a storage entry, which is called “the owner of that entry” for simplicity, essentially records
who has written the latest content of that entry. Normally the initial owner of an entry should be the sender of the transaction
that causes the creation of this entry. However, in case a contract provides the collateral on behalf of the sender, the owner will
be that contract instead (see Section 8.1 for details). When a storage entry is modified in the execution of a transaction, the
ownership of this entry is changed, and the old owner’s collateral for that entry is replaced by the new owner’s collateral.

If a storage entry is cleared from the world-state, then the corresponding collateral is unlocked and returned to the owner of
that entry. We remark that there is no refund to the actor who causes the clearance, which is distinct from the gas refunding
policy in Ethereum [3]. Furthermore, to ensure that unlocked collateral for storage is always returned properly, Conflux does
not allow destructing any smart contract with non-zero collateral for storage.

6.5.4 Execution Environment
Besides the global system state σ and the amount of remaining gas g, the execution agent must provide the following important
information used in the execution environment, as contained in the tuple I:
• Ia, the address of the account which owns the code that is executing.
• Io, the address of the original sender who originated this execution.
• Ii, the address of the storage owner.
• Ip, the gas price designated by the transaction that originated this execution.
• Id, the byte array that is the input data to this execution; in case the execution agent is a transaction T, this would be the

transaction data Td.
• Is, the address of the account that invoked the code; in case the execution agent is a transaction T, this would be the

transaction sender’s address S(T).
• Iv, the value, in Drip, passed to the recipient’s account; in case the execution agent is a transaction T, this would be the

transaction value Tv.
• Ib, the byte array of the machine code to be executed.
• IH, the block header of the present block.
• Ie, the depth of the current message-call or contract-creation in the stack.
• Iw, the permission to make modifications to the state.
• Iσ , the original world-state right before this execution.
The state transition is defined by the execution function Ξ, which takes as input the current world-state σ , the amount of

gas g, and the input I as defined above, and outputs the resultant state σ ′, the remaining gas g′, the accrued substate A and the
resultant output o. Formally, we define it as follows:(

σ
′,g′,A,o

)
≡ Ξ(σ ,g, I) (206)

where we recall that the accrued state A consists of the selfdestructs set As, the log series Al, the touched accounts At, a series of
addresses recording the owners of storage occupation Ao and a series of addresses recording the owners of storage release Ae
(as described in Section 6.2.3):

A≡ (As,Al,At,Ao,Ae) (207)

6.5.5 Execution Overview
The Ξ function is defined mostly following the Ethereum yellowpaper [3], except for a few instructions. For self-sufficiency we
explain the definition of Ξ briefly.

In most practical implementations Ξ will be modeled as an iterative progression of the pair (σ ,µ) comprising the world-state
and the machine state. Formally, it can be recursively defined with a function X . This uses an iterator function O (which
defines the result of a single cycle of the state machine) together with functions Z, which determines if the present state is an
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exceptional halting state of the machine, and H, specifying the output data of the instruction if and only if the present state is a
normal halting state of the machine.

Recall that the empty sequence, denoted by ε , is not equal to the empty set, denoted by ∅; this is important when interpreting
the output of H, which evaluates to ∅ when execution is to continue but a series (potentially empty) when execution should halt.

Ξ(σ ,g, I) ≡ (σ ′,µ ′g,A,o) (208)

(σ ′,µ ′,A, ...,o) ≡ X
(
(σ ,µ,A0, I)

)
(209)

µg ≡ g (210)
µpc ≡ 0 (211)
µm ≡ (0,0, ...) (212)
µi ≡ 0 (213)
µs ≡ ε (214)
µo ≡ ε (215)
µr ≡ ε (216)

X
(
(σ ,µ,A, I)

)
≡


(
∅,µ,A0, I,ε

)
if Z(σ ,µ,A, I)(

∅,µ ′,A0, I,o
)

if w = REVERT

O(σ ,µ,A, I) ·o if o 6=∅
X
(
O(σ ,µ,A, I)

)
otherwise

(217)

where

o ≡ H(µ, I) (218)
(a,b,c,d) · e ≡ (a,b,c,d,e) (219)

µ
′ ≡ µ except: (220)

µ
′
g ≡ µg−C(σ ,µ, I) (221)

Note that, when evaluating Ξ instead of X , the fourth element I′ is dropped and the remaining gas µ ′g is extracted from the
resultant machine state µ ′.

X is thus cycled (recursively here, but implementations are generally expected to use a simple iterative loop) until either Z
becomes true indicating that the present state is exceptional and that the machine must be halted and any changes discarded or
until H becomes a series (rather than the empty set) indicating that the machine has reached a controlled halt.

Machine State. The machine state µ is defined as the tuple (g,pc,m, i,s,r) which are the gas available, the program counter
pc ∈ N256 , the memory contents, the active number of words in memory (counting continuously from position 0), the data
stack contents and return stack contents. The memory contents µm are a series of zeros of size 2256. The return stack µr is
limited to 1023 items.

For the ease of reading, the instruction mnemonics, e.g. ADD, should be interpreted as their numeric equivalents; the full
table of instructions and their specifics are given in Appendix E.2.

For the purposes of defining Z, H and O, we define w as the current operation to be executed:

w≡

{
Ib[µpc] if µpc < ‖Ib‖
STOP otherwise

(222)

Furthermore, we let δ and ρ denote the fixed number of stack items removed from and pushed into the data stack µs
by executing an instruction. Both δ and ρ are assumed subscriptable on the instruction. Similarly, we define δ ∗ and ρ∗ for
the return stack µr, which is only accessed when entering or returning from subroutines on JUMPSUB and RETURNSUB
instructions. An instruction cost function C evaluates to the full cost, in gas, of executing the given instruction.
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Exceptional Halting. The exceptional halting function Z is defined as:

Z(σ ,µ,A, I)≡ µg <C(σ ,µ, I)
∨ δw =∅
∨ ‖µs‖< δw
∨ (w = JUMP ∧ µs[0] /∈ D(Ib))
∨ (w = JUMPI ∧ µs[1] 6= 0 ∧ µs[0] /∈ D(Ib))
∨ (w = RETURNDATACOPY ∧ µs[1]+µs[2]> ‖µo‖)
∨ ‖µs‖−δw +ρw > 1024
∨ (¬Iw ∧ W (w,µ))

(223)

where

W (w,µ)≡ w ∈ {CREATE,CREATE2,SSTORE,SUICIDE}
∨ (LOG0≤ w∧w≤ LOG4)
∨ (w ∈ {CALL,CALLCODE}∧µs[2] 6= 0)

(224)

This states that the execution is in an exceptional halting state if there is insufficient gas, if the instruction is invalid (and
therefore its δ subscript is undefined), if there are insufficient stack items, if a JUMP/JUMPI destination is invalid, if the output
data size ‖µo‖ is insufficient for the copy-output-data operation specified in a RETURNDATACOPY instruction, or if the new
stack size would be larger than 1024 or state modification is attempted during a static call. The astute reader will realize that
this implies that no instruction can, through its execution, cause an exceptional halt.

Jump Destination Validity. We previously used D as the function to determine the set of valid jump destinations given the
code that is being run. We define this as any position in the code occupied by a JUMPDEST instruction.

All such positions must be on valid instruction boundaries, rather than sitting in the data portion of PUSH∗ operations and
must appear within the explicitly defined portion of the code (rather than in the implicitly defined STOP operations that trail it).

Formally:

D(c)≡ DJ(c,0) (225)

where:

DJ(c, i)≡


{} if i > ‖c‖
{i}∪DJ(c,N(i,c[i])) if c[i] = JUMPDEST

DJ(c,N(i,c[i])) otherwise
(226)

where N is the next valid instruction position in the code, skipping the data of a PUSH∗ instruction, if any:

N(i,w)≡

{
i+w−PUSH1+2 if w ∈ [PUSH1,PUSH32]

i+1 otherwise
(227)

Normal Halting. The normal halting function H is defined:

H(µ, I)≡


HRETURN(µ) if w ∈ {RETURN,REVERT}
ε if w ∈ {STOP,SUICIDE}
∅ otherwise

(228)

The data-returning halt operations, RETURN and REVERT, have a special function HRETURN. Note also the difference
between the empty sequence and the empty set as discussed here.

6.5.6 The Execution Cycle
Stack items are added or removed from the left-most, lower-indexed portion of the series; all other items remain unchanged:

O
(
(σ ,µ,A, I)

)
≡ (σ ′,µ ′,A′, I) (229)

∆ ≡ ρw−δw (230)
‖µ ′s‖ ≡ ‖µs‖+∆ (231)

∀x ∈
[
ρw,‖µ ′s‖−1

]
: µ
′
s[x] ≡ µs [x−∆] (232)
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The gas is reduced by the instruction’s gas cost.

µ
′
g ≡ µg−C(σ ,µ, I) (233)

For most instructions, the program counter pc increases by 1 on each cycle, except for following instructions: PUSH∗,
JUMP, JUMPI, JUMPSUB, RETURNSUB. The next valid instruction position for PUSH∗ instructions is already specified in
N as in eq. (227). We assume a function J, subscripted by one instruction from

{
JUMP, JUMPI, JUMPSUB, RETURNSUB

}
,

which evaluates to the according value:

µ
′
pc ≡



JJUMP(µ) if w = JUMP

JJUMPI(µ) if w = JUMPI

JJUMPSUB(µ) if w = JUMPSUB

JRETURNSUB(µ) if w = RETURNSUB

N(µpc,w) otherwise

(234)

In general, we assume the memory, self-destruct set and system state do not change:

µ
′
m ≡ µm (235)
µ
′
i ≡ µi (236)

A′ ≡ A (237)
σ
′ ≡ σ (238)

However, instructions do typically alter one or several components of these values. Altered components listed by instruction
are noted in Appendix E, alongside values for ρ , δ , ρ∗,δ ∗ and a formal description of the gas requirements.

6.5.7 Difference from Ethereum
The execution function Ξ follows nearly the same definition as in Ethereum yellowpaper [3] except for a few instructions.
When executing O(σ ,µ,A, I)≡ (σ ′,µ ′,A′, I′) for the iterator function O which defines the result of a single cycle of the state
machine, Conflux differs from Ethereum on following instructions.

Sub-call operations. Conflux has two additional parameters comparing with Ethereum: the recipient addresses call-state t
and the storage owner i. In sub-call operations such as CREATE, CALL, CALLCODE, DELEGATECALL, and STATICCALL,
the recipient addresses It · Ia and storage owner Ii are passed to Λ and Θ as part of the execution environment I.

Re-entrance Protection. When calling a contract, Conflux virtual machine makes sure that re-entrance attack is impossible
by preventing re-entrance message call, except the message call matches some requirements which make re-entrance attack
impossible.

To be specific, the Conflux virtual machine maintains a call stack It and enters reentrance protection mode in a message call
when the callee is already in the call stack but different from the caller before executing the code invoked by each message call.
By requiring that the callee being different from the caller, it is still allowed to call and execute other functions in the caller’s
contract. Because in such cases the developer should be able to fully anticipate the execution flow and we do not consider it
necessary to trigger the re-entrance protection. The execution with reentrance protection mode is exactly the same as execution
with static flag set by STATICCALL.

SSTORE operation. The SSTORE operation transforms (σ ,A) into (σ ′,A′) as follows:

(σ ′,A∗)≡Φ(σ , Ia,µs[0],µs[1], Ii) (239)
A′ ≡ AdA∗ (240)

where Φ is defined in section 7.1.
In Ethereum, the cost of operation SSTORE is Gsset = 20000 gas when the storage value is set to non-zero from zero, and

Gsreset = 5000 gas when the storage value is set to zero. Ethereum will also refund Rsclear = 15000 gas when the storage value
is set to zero from non-zero.

In Conflux, since the cost of using storage is reflected by collateral for storage, there is no need to charge space consumption
in gas. Thus Conflux charged Gsset = 5000 gas for all the SSTORE operation, regardless of the storage value, and there is
no gas refund either. Furthermore, the Conflux ledger σ tracks the owner of every storage entry with non-zero value. The
execution substate A records all changes on ownership of storage entries.
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SUICIDE operation. When executing the SUICIDE operation, if the address receiving refund balance is invalid (i.e.
Type

µs[0] mod 2160 /∈{[0000]2, [0001]2, [1000]2}) the refund balance will be burnt. Otherwise, the SUICIDE operation transforms
(σ ,A) into (σ ′,A′) following the same steps as Ethereum.

Subroutine operation. Ethereum introduces BEGINSUB, JUMPSUB, RETURNSUB instructions in EIP-2315, which is not
listed in its yellowpaper. Conflux implements this instruction with identical behavior as Ethereum.

7. Collateral for Storage

Collateral for storage (CFS for short) mechanism is introduced in Conflux as a pricing method for the usage of storage, which
is more fair and reasonable than the one-off storage fee in Ethereum. In principle, this mechanism requires a fund being
locked as collateral for any occupation of storage space. The collateral is locked until the corresponding storage is freed or
overwritten by someone else, and the corresponding interest generated by the locked collateral is assigned directly to miners for
the maintenance of storage. Thus, the cost of storage in Conflux also depends on the duration of space occupation.

In Conflux, every entry of storage is 64B, which is exactly the size of a single key/value pair in the world-state. The required
collateral for storage is proportional to the smallest multiple of 64B that are capable to cover all stored items. For every storage
entry, the account that last writes to the entry is called the owner of that storage entry. If a storage entry is written in the
execution of a contract C with sponsorship for collateral, then C is regarded as the account writing to that entry and hence
becomes the owner accordingly (see Section 8.1 for more details). In the whole lifetime of a storage entry in the world-state,
the owner of that entry must lock a fixed amount of CFX as collateral for the occupation of storage space. In particular, for
each storage entry of size 64B the owner should lock 1/16 CFX. This price is essentially 1 CFX for 1KB space, i.e. every byte
of storage requires 1018/1024 Drip.

At the time that an account α becomes the owner of a storage entry (at either creation or modification), α should lock 1/16
CFX for that entry at the end of transaction execution. If α is a normal address, the locked 1/16 CFX is deducted from its
balance. If α is a contract address, the locked 1/16 CFX is deducted from its sponsor balance for collateral. If α has enough
balance then the required collateral is locked automatically, otherwise if α does not have enough balance, the whole transaction
execution will fail.

When a storage entry is deleted from the world-state, the corresponding 1/16 CFX collateral is unlocked and returned to
the balance of that entry’s owner. In case the ownership of a storage entry is changed, the old owner’s 1/16 CFX collateral is
unlocked, while the new owner must lock 1/16 CFX as collateral at the same time.

For convenience, we introduce the function CFS which takes an account address a and a world-state σ as input and returns
the total amount of Drip’s of locked collateral for storage of account a in world-state σ . In case the world-state σ is clear from
context, we write CFS(a) instead of CFS(a;σ) for succinctness.

CFS(a)≡ CFS(a;σ)≡ σ [a]o (241)

The world state also maintains the total number of locked tokens for collateral, which is stored in storage entry of staking
internal contract. We introduce function ACFS to read this value from world state σ

ACFS(σ)≡ σ [astake]s[k4]v (242)
where: (243)

astake ≡ 0x0888000000000000000000000000000000000002 (244)
k4 ≡ [total storage tokens]ch (245)

7.1 Storage writing
In order to refund the storage collateral to payer when the storage entry is released, Conflux must track the owner for each
storage entry. Here we formally describe the storage writing function Φ(σ ,a,k,v,o), which sets storage entry k of account a to
value v and address o is the storage owner. It returns updated world-state σ ′ and a substate A.
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σ
′ ≡ σ except: (246)

σ
′[a]s[k]≡

{
(v,o) v 6= 0
∅ v = 0 (247)

A1 ≡ A0 except: (248)

A1[so]c ≡−64× 1018

1024
if v 6= σ [a]s[k]v ∧ so 6= s′o ∧ so 6=∅ (249)

A2 ≡ A0 except: (250)

A2[s′o]c ≡ 64× 1018

1024
if v 6= σ [a]s[k]v ∧ so 6= s′o ∧ s′o 6=∅ (251)

A≡ A1 dA2 (252)
where: (253)

s≡ σ [a]s[k] (254)
s′ ≡ σ

′[a]s[k] (255)

There are five special storage entries in staking vote contract 0x0888000000000000000000000000000000000002, which
record the statistic information about Conflux blockchain. Their owners are always the staking vote contract and they are
exempted from storage collateral. Their keys are list as follows

[accumulate interest rate]ch (256)
[interest rate]ch (257)
[total staking tokens]ch (258)
[total storage tokens]ch (259)
[total issued tokens]ch (260)

These five storage entries can only be accessed by the internal contract. In this document, we don’t use function Φ when
dealing with these entries and thus function Φ does not need to consider this special case.

8. Internal Contracts
Conflux introduces several built-in internal contracts for better system maintenance and on-chain governance. They provide
solidity-like interface for developers. The interface list and their gas consumptions are list in section G.1. Section G formally
describes the behavior of internal contracts. In this section, we introduce the high-level design of internal contracts.

8.1 Sponsorship for Usage of Contracts
Conflux implements a sponsorship mechanism to subsidize the usage of smart contracts. Thus, a new account with zero
balance is able to call smart contracts as long as the execution is sponsored (usually by the operator of Dapps). The built-in
SponsorControl Contract is introduced to record the sponsorship information of smart contracts.

The SponsorControl contract keeps the SponsorInfo information for each user-established contract C. The SponsorInfo
contains the following fields.
• sponsor for gas: this is the account that provides the subsidy for gas consumption;
• sponsor for collateral: this is the account that provides the subsidy for collateral for storage;
• sponsor balance for gas: this is the balance of subsidy available for gas consumption;
• sponsor balance for collateral: this is the balance of subsidy available for collateral for storage;
• sponsor limit for gas fee: this is the upper bound for the gas fee subsidy paid for every sponsored transaction;
The SponsorControl contract also keeps a whitelist for each user-established contract C, which records normal accounts

that are eligible for the subsidy. A special all-zero address refers to all normal accounts. If the storage entry of SponsorControl
contract with key Caddr ·a is set to one, the address a is in the whitelist of contract C.
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So we can check if an address a is in whitelist of contract C by

Whitelist(σ ,a,C)≡ σ [asponsor]s[Caddr ·a]v 6= 0 ∨ σ [asponsor]s[Caddr · y]v 6= 0
where:

y≡ [0000000000000000000000000000000000000000]2
asponsor ≡ 0x0888000000000000000000000000000000000001 (261)

Sponsor for gas consumption. For a contract C with non-empty sponsor for gas and a transaction T calling C, T is
eligible for the subsidy for gas consumption if S(T) is in the whitelist of C and the gas fee specified by T is within the
limit, i.e. Tp × Tg ≤ sponsor limit for gas fee of C. The gas consumption of T is paid from the sponsor balance for
gas of C (if it is sufficient) rather than from the sender’s balance, and the execution of T would fail if the sponsor bal-
ance for gas cannot afford the gas consumption. In case the transaction specifies a gas fee (i.e. Tp×Tg) greater than
min{sponsor limit for gas fee,sponsor balance for gas}, there is no subsidy and the sender S(T) should pay for the gas
consumption as usual.

Sponsor for storage collateral. For a contract C with non-empty sponsor for collateral and a transaction T calling C, T
is eligible for the subsidy for storage usage if: a) its sender S(T) is in the whitelist of C, and b) the sponsor balance for
collateral of C can afford its storageLimit T` (i.e. T`× 1018/1024 Drip). If T is eligible, then the collateral for storage
incurred in the execution of T is deducted from sponsor balance for collateral of C, and the owner of those modified storage
entries is set to C accordingly. In case S(T) is not in the whitelist or the sponsor balance for collateral cannot cover the
storageLimit, the sender S(T) has to pay for storage usage from its own balance as usual.

8.1.1 Sponsorship Update
Both sponsorship for gas and for collateral can be updated by calling the SponsorControl contract. The current sponsors can
call this contract to transfer funds to increase the sponsor balances directly, and the current sponsor for gas is also allowed
to increase the sponsor limit for gas by transferring ≥ 1000 times of the new limit. Other normal accounts can replace the
current sponsors by calling this contract and providing more funds for sponsorship.

To replace the sponsor for gas of a contract C, the new sponsor should transfer to C a fund more than the current sponsor
balance for gas of C and set a new value for sponsor limit for gas fee. The new value of sponsor limit for gas fee should
be no less than the old sponsor’s limit unless the old sponsor balance for gas cannot afford the old limit. Moreover, the
transferred fund should be ≥ 1000 times of the new limit, so that it is sufficient to subsidize at least 1000 transactions calling C.
If the above conditions are satisfied, the remaining sponsor balance for gas will be refunded to the old sponsor for gas, and
then sponsor balance for gas, sponsor for gas and sponsor limit for gas fee will be updated according to the new sponsor’s
specification.

The replacement of sponsor for collateral is similar except that there is no analog of the limit for gas fee. The new
sponsor should transfer to C a fund more than the fund provided by the current sponsor for collateral of C. Then the current
sponsor for collateral will be fully refunded, i.e. the sum of sponsor balance for collateral and CFS(C), and both collateral
sponsorship fields are changed as the new sponsor’s request accordingly. Note that the contract C is the owner of subsidized
storage entries, so that the replacement of sponsorship for collateral will not affect ownership of existing storage entries.

Note: A contract account is also allowed to be a sponsor. Therefore it is possible that the sponsoring contract may be
destructed before its sponsorship is replaced, in which case the receiver of sponsorship refund will be an already-destructed
contract. Since the balance of such a contract is not operable (unless there is collision of KEC), it is meaningless to record that
number in state and hence the refund will be burnt immediately.

8.2 Admin Management
The AdminControl Contract is introduced for better maintenance of other smart contracts, espeically which are generated
tentatively without a proper destruction routine: it records the administrator of every user-established smart contract and handles
the destruction on request of corresponding administrators.

The default administrator of a smart contract C is the creator of C, i.e. the sender α of the transaction that causes the
creation of C. The current administrator of a smart contract can transfer its authority to another normal account by sending a
request to the AdminControl contract. Contract accounts are not allowed to be the administrator of other contracts, since this
mechanism is mainly for tentative maintenance. Any long term administration with customized authorization rules should be
implemented inside the contract, i.e. as a specific function that handles destruction requests.

At any time, the administrator α of an existing contract C has the right to request destruction of C by calling AdminControl.
If α is the current administrator of C and CFS(C) = 0, then the destruction request is accepted and processed as follows:

1. the balance of C will be refunded to α;
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2. the sponsor balance for gas of C will be refunded to sponsor for gas;
3. the sponsor balance for collateral of C will be refunded to sponsor for collateral;
4. the internal state in C will be released and the corresponding collateral for storage refunded to owners;
5. the contract C is deleted from world-state.
The administrator of contract a is stored in account component aa.

8.3 Staking Mechanism
Conflux introduces the staking mechanism for two reasons: first, staking mechanism provides a better way to charge the
occupation of storage space (comparing to “pay once, occupy forever”); and second, this mechanism also helps in defining the
voting power in decentralized governance.

At a high level, Conflux implements a built-in Staking Contract to record the staking information of all accounts. By
sending a transaction to this contract, users (both external users and smart contracts) can deposit/withdraw funds, which is also
called stakes in the contract. The interest of staked funds is issued at withdrawal, and depends on both the amount and staking
period of the fund being withdrawn.

In Conflux, the staking contract keeps track of staked funds and freezing rules. For every account α the staking contract
records the following:

• staking funds: each staking fund entry consists of the balance v ∈ N256 and creation time t ∈ N64 of a staked fund from
the sender α , and the entry is cleared when the fund is completely withdrawn;

• freezing rules: each freezing rule entry is a combination of (v, t) ∈ N256×N64 which promises that the total stake
balance of account α must be at least v (measured in Drip) as long as the block number (as defined in BlockNo) does not
exceed t. Expired freezing rule entries are cleared at the next update of freezing rules of the same account α .

Both kinds of entries in the staking contract requires collateral for storage, and the collateral is returned at the clearance of
corresponding entries.

8.3.1 Interest Rate
The staking interest rate is currently set to 4% per year. Compound interest is implemented in the granularity of blocks. So the
annualized interest rate is about 4.08%.

When executing a transaction sent by account α at block B to withdraw a fund of value v deposited at block B′, the interest
is calculated as follows:

Interest issued to α ≡

⌊
v× f (BlockNo(B))(n)

f (BlockNo(B′))(n)

⌋
− v (262)

where: (263)

f (x)≡
⌊

x×
(

1+
4%

63072000

)⌋
(264)

n≡ 63072000×280 (265)

The interest is approximately equals to((
1+

4%
63072000

)T

−1

)
× v, (266)

where T ≡ BlockNo(B)−BlockNo(B′) is the staking period measured by number of blocks, and 63072000 is the expected
number of blocks generated in 365 days with the target block time 0.5 seconds. Therefore after the withdrawal, α’s total
amount of staking funds is decreased by v, and its balance is increased by:

∆(αb)≡ v+ Interest issued to α (267)

The account α only specifies the value v in its withdrawal request. The withdrawal always starts from the earliest staked
fund and recursively continues to the next one until the accumulative amount is sufficient.

The same interest rate applies to collateral for storage as well, but the CFS interest is issued directly to the miners as the
payment for storage usage at the generation of every new block. More details about CFS interest issuance are specified in
Section 10.2.
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8.3.2 Staking for Voting Power
For decentralized governance, the staking mechanism provides a way to measure the involvement and devotion of users with
the new dimension of staking age.

When deciding voting power, it is fair and reasonable to take the staking time into consideration, rather than merely the
amount of tokens. By relating voting power to committed staking period, the risk of being attacked is also mitigated, since
the attacker must hold the tokens for a sufficiently long period to obtain enough voting power, which increases the cost of
launching an attack.

For every account α , its committed staking time is recorded in the account field staking vote info in the form of freezing
rules, where each entry (v, t) ∈ N256×N64 is a promise that the staking balance of α must be at least v Drip until the index
of block in total order (e.g. BlockNo) reaches t. A withdrawal request from α is invalid if any freezing rule is violated after
fulfilling that request. The list of freezing rules for every account is append-only so that committed staking period cannot be
canceled or shorten. However every single rule will eventually expire as the block number grows, e.g. the rule (v, t) expires at
block B with BlockNo(B)≥ t. Expired freezing rule entries are cleared from state storage of the built-in staking contract at the
next update of freezing rules of the same account.

Note that freezing rules are decoupled from specific staking funds, i.e. old funds can be withdrawn as long as the remaining
staking balance is sufficient. Therefore, the staking contract is allowed to maintain staked funds in a first-in-first-out manner
(i.e. the earliest staked fund is also first withdrawn).

The voting power of each staked token is defined in the following table:

Remaining Committed Staking Time Voting Power

One year or more (i.e. ≥ 63072000 blocks) 1
Six months to one year (≥ 31536000 but < 63072000 blocks) 0.5
Three to six months (≥ 15768000 but < 31536000 blocks) 0.25
Less than three month (i.e. < 15768000 blocks) 0

Therefore the total voting power of each account can be easily calculated from its freezing rules as recorded in the staking
contract.

9. Proof of Work
Conflux applies the Multi-point Ethash function MpEthash as the Proof-of-Work function PoW. MpEthash is a twisted version
of Ethash function with additional evaulation of a polynomial on multiple points. The detailed specification of this function is
in Appendix F.

The MpEthash function is defined as:

MpEthash(H)≡MpEthash(KEC(RLP(H−n)) ,Hn,d)≡ KEC(sh ◦mc) (268)

where d denotes the dataset derived from H as in Appendix F.3.3 and H−n denotes the header excluding the nonce field, i.e.
H ≡ H−n ◦Hn since nonce is indeed the last field in the structure of block header, and the fields of H−n are RLP-serialized
according to their order in Section 3.4.

The output of MpEthash is the Keccak-256 hash of the concatenation of the seed hash sh ∈ B512 and the compressed mix
mc ∈ B256. See Appendix F.4 for more details.

The MpEthash function is essentially the Proof-of-Work function PoW:

PoW(H)≡MpEthash(H) (269)

9.1 Proof-of-Work Quality
The proof-of-work quality (a.k.a. PoW quality or simply quality) of a block refers to the expected amount of work spent in
finding such a block. Given a block B with header H(B) and the 256-bit scalar OFFSET(H)≡ [Hn(B)[1 . . .127]]2×2128 ∈N256
which denotes the offset of proof-of-work validation, the quality of B essentially represents the expected number of random
trials to find a block B′ with header H′ satisfying that PoW(H′) is in between of OFFSET(H) and PoW(H).

More specifically, the block B with header H(B) has quality

QUALITY(B)≡ QUALITY(H)≡


⌊
2256/(PoW(H)−OFFSET(H)+1)

⌋
if PoW(H)> OFFSET(H)⌊

2256/
(
2256 +PoW(H)−OFFSET(H)+1

)⌋
if PoW(H)< OFFSET(H)

2256−1 if PoW(H) = OFFSET(H)

(270)
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9.2 Difficulty Adjustment
The difficulty is adjusted according to the block generation rate in the past. More specifically, we estimate the current computing
power of all miners from the number of blocks in the last 5000 epochs and the average timestamps of blocks in the beginning
and ending epochs, and then set the target difficulty for the next 5000 epochs such that the expected block generation rate
should be roughly one block per 0.5 seconds.

Formally, for 0≤ j ≤ 5000, the target difficulty of a block at height j is set to d0 ≡ 2×1010 = 20G; for any positive integer
i≥ 1, the target difficulty of blocks at height j ∈ [5000i+1,5000i+5000] is set to di ∈ N256 such that

di ≡


bdi−1×1.5c if d′i > di−1×1.5
ddi−1×0.5e if 20G≤ d′i < di−1×0.5
20G if d′i < 20G
d′i otherwise (di−1×0.5≤ d′i ≤ di−1×1.5)

(271)

where d′i ∈ N256 is the estimation of ideal target difficulty defined as follows

d′i ≡ di−1×500000×

(
5000i

∑
j=5000(i−1)+1

|EPOCH j|−1

)
/

H
(

B(5000i)
)

s
− min

5000(i−1)≤ j<5000i ∧ H
(

B( j)
)

s
6=0

{
H
(

B( j)
)

s

}
(272)

where for every k ∈ N, EPOCHk denotes the set of fully valid blocks in the k-th epoch and B(k) denotes the pivot block in
EPOCHk. In the above formula the total number of blocks in last 5000 epochs is decreased by 1, which leads to an unbiased
estimation of block generation rate.

Note that a single block B may not have a global view. Indeed, the best it could do is to compute the target difficulty di
from its local view of blocks in PAST(B). In particular, a block B at height h≡ H(B)h should have target difficulty

H(B)d ≡

{
d0 h = 0
db h−1

5000c h > 0, db h−1
5000c is calculated with respect to PAST(B)

(273)

Epoch difficulty. As soon as all nodes agree on the pivot block B(k) at the k-th epoch EPOCHk, we can uniquely define the
target difficulty of EPOCHk as the target difficulty of B(k). Formally,

dEPOCHk ≡ H
(

B(k)
)

d
(274)

where H
(

B(k)
)

d
is the difficulty field in B(k)’s header and it equals to db k−1

5000c derived from the past view of B(k).

10. Incentive Mechanism
Conflux miners get paid by Conflux coins from two sources: the newly minted Conflux coins as block award, and the fees paid
by transaction senders. In this section we specify the mechanism design for incentivizing Conflux miners. The adaptive weight
introduced by the GHAST rule only affects the distribution of the first part of block award.

10.1 Base Block Award
The amount of coins issued to miners in every block is set in accordance to a global parameter which follows the mining
schedule. We refer to the global parameter as the base block award or simply base award, and denote it by Rbase.

The base block award starts at Rbase(G) = 7 CFX per block, and reduces to 2 CFX stated at the 3615000epoch. For every
pivot block B, the base award is defined as follows:

Rbase(B)≡

{
7×1018 if BHh < 3615000
2×1018 if BHh ≥ 3615000

(275)

For every non-pivot block B, the base award Rbase(B) of B equals to the base award of the pivot block of the epoch that B
belongs to, i.e.

Rbase(B)≡ Rbase(PIVOT(B))

Based on Rbase(B), Conflux defines the the actual block award issued to the author of block B with adjustments as described
in the rest of Section 10.1.
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10.1.1 Anti-cone Penalty
For every block B, we recall that a block B′ is in the anti-cone of B if there is no directed path between B′ and B, which means
the chronological order of these two blocks is not reflected by the underlying Tree-Graph. For every given Tree-Graph G, let
A (B;G) denote the set of all anti-cone blocks of B ∈G that appear no later than 10 epochs after5 the epoch where B resides in.
When the Tree-Graph G is clear from context, we write A (B) instead of A (B;G) for short. Formally,

A (B)≡A (B;G)≡
{

B′ ∈G
∣∣ B /∈ PAST(B′)∧B′ /∈ PAST(B)∧H

(
PIVOT

(
B′
))

h ≤ H(PIVOT(B))h +10
}

(276)

In other words, let B10 be the pivot block at height H(B10)h = H(PIVOT(B))h +10, then

A (B)≡A (B;G)≡ PAST(B10)\(PAST(B)∪FUTURE(B;G)∪{B}) (277)

The anti-cone penalty factor of B is defined as

AF(B)≡max

{
0,1−

(
Weight(A (B))/dEPOCH(B)

γ

)2
}

(278)

where γ ≡ 100 is a fixed constant and Weight(A (B))≡ ∑B′∈A (B)Weight(B′) refers to the total adapted weight of blocks in
the anti-cone set A (B). We remark that Weight(A (B))/dEPOCH(B) is the equivalent number of blocks in the anti-cone of B,
which corresponds to the portion of computing power in B’s anti-cone.

This anti-cone penalty factor is introduced to incentivize inclusion of referee blocks as well as fast propagation. It also
punishes withholding attacks when the blocks are not broadcast immediately. There is no additional award for referencing
referee blocks, nor discount in block award for non-pivot blocks.

10.1.2 Base Factor
For convenience, we introduce the base factor BF(B) to indicate whether the author of B is eligible to receive any award.

If a block B in EPOCHk has a lower target difficulty, i.e. Bd < dEPOCHk , then we decide the base award of B by its block
quality QUALITY(B): it gets normal base award if the block quality QUALITY(B) reaches the epoch’s target difficulty dEPOCHk ,
and zero base award Rbase(B)≡ 0 in case the quality QUALITY(B) does not meet dEPOCHk . Note that the expected base award
is effectively the same as setting Rbase(B)≡ Bd

dEPOCHk
·Rbase(EPOCHk).

If a block B is partially valid, blamed, or has a large anti-cone, then the author of B must have made some mistake and
hence he is not eligible for any award.

Thus, the base factor BF(B) of block B is defined as

BF(B)≡


1 B is valid and AF(B)> 0, not blamed, and satisfies the target difficulty of EPOCHk (which requires

QUALITY(B)≥ dEPOCHk )
0 otherwise (B is partially valid, AF(B) = 0, blamed, or QUALITY(B) does not satisfy the requirement)

(279)

10.1.3 Actual Block Award to Miners
Taking all the discounts and adjustments into account, the block award assigned to the author of B is defined as follows:

Rblock(B)≡ bAF(B) ·BF(B) ·Rbase(B)c (280)

Remark: A non-pivot block B1 may receive a higher block award than the pivot block B2 in the same epoch, in case
Weight(A (B1))<Weight(A (B2)) and hence AF(B1)> AF(B2).

10.2 Storage Maintenance Reward
Miners receive interest generated by collateral for storage, as payment to the cost of occupying storage space in the world-state.
More specifically, the CFS interest generated by all blocks in each epoch is redistributed to authors of blocks in the epoch with
respect to their actual mining block award. In particular, the CFS interest assigned to the author of block B is calculated as
follows:

Rstorage(B)≡

 ∑
B′∈EPOCH(B)

⌊
ACFS(σ(B′))× 4%

63072000

⌋
× Rblock(B)

∑B′∈EPOCH(B)Rblock(B′)

 (281)

5If B is not on the pivot chain in G, then A (B;G) also contains blocks appearing in earlier epochs but not referenced by B.
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where σ(B′) denotes the world-state at the beginning of the execution of transactions in block B′, ACFS(σ(B′)) is the total
CFS in B′, 4% is the annual interest rate and 63072000 is the (expected) number of blocks in one year, and hence the value in
parenthesis is the CFS interest generated by B′; and the distribution of CFS interest in EPOCH(B) is proportional to actual
block awards Rblock(B) as defined in Section 10.1.3.

Specially, if the total block reward for the whole epoch is zero, (i.e., ∑B′∈EPOCH(B)Rblock(B′) = 0), the storage maintenance
reward will not be distributed.

10.3 Transaction Fee Reward
If a transaction T is first executed successfully in the i-th epoch EPOCHi, then the transaction fee (for purchasing the consumed
gas) of T is divided between all blocks that properly include T. Here “a block B properly includes a transaction T” means that:
T ∈ B and B belongs to EPOCHi (the epoch that T is executed for the first time).

The transaction fee is distributed proportionally to the binary base factors of blocks as defined in (279). In particular, if the
transaction T is exclusively packed in blocks with zero base factor, the transaction fee is burnt although the transaction will still
be processed.

After execution of block B, we can get its receipt list R′(B) with the same length as transaction list BTs. So each transaction
T ∈ BTs can be paired with its corresponding receipt R. The actually charged transaction fee is recorded in R f . Recalling that
BF(B) is a binary function respecting to the validity of B, the transaction fee assigned to B is defined as follows:

R f ee(B)≡ ∑
(T,R) : B properly includes T

⌊
R f ·BF(B)

∑B′:B′ properly includes TBF(B
′)

⌋
(282)

When there are multiple blocks properly include the transaction T, there may be a remainder for transaction fee of T.
Formally, the remainder r equals to

r ≡ R f − ∑
B′:B′ properly includes T

BF(B′) ·

⌊
R f ·BF(B)

∑B′:B′ properly includes TBF(B
′)

⌋
. (283)

In case the remainder is non-zero, the blocks with r minimum block hash KEC(RLP(BH)) will receive one more Drip. So
the transaction fee can be exactly distributed to miners.

10.3.1 Why not distributing transaction fees among all blocks in that epoch?
One may suggest that the transaction fee of T should be shared by all valid blocks in that epoch, rather than among blocks that
properly include T as described in (282). In what follows we show that our current implementation has several advantages:

• For security and incentive compatibility: the first priority of the incentive mechanism design is to guarantee that every
rational participant will behave honestly, i.e. they should respect the consensus protocol and reference all the blocks they
have observed. However, the mechanism of sharing transaction fee may bring incentives that prevent the author of a
block referencing other blocks.

For example, if there is a transaction T with a considerable fee, miners may be willing to monopolize that fee even
if suffering some punishment caused by a larger anti-cone. In particular, the author who packs T into a new block B
would prefer not to share the transaction fee of T with others, especially when this fee is much higher than the anti-cone
punishment caused by ignoring other blocks that are eligible to share the fee of T.

If the fee of T is to be shared with all other blocks in the same epoch, the author of B would be hostile to all other
unreferenced blocks, and hence they get incentives to ignore those blocks by shirking all responsibility to network latency.
Therefore, by manipulating transaction fees and causing such intentional ignorance, an attacker is able to effectively
launch a partition attack.

If the fee of T is to be shared only among blocks including T, the author of B may still want to ignore other blocks with
T. However, the difference is that the author of B would not be hostile to blocks without T, since he does not have to
share the transaction fee of T with them. As a result, the author of B will be open to reference other observed blocks
without T in B. Furthermore, referencing blocks with T in any later epoch is also safe, even if there are new transactions
(other than T) with significant fees. Thus by manipulating transaction fees the attacker could merely cause a slightly
longer latency instead of a significant partition.

In conclusion, sharing transaction fee of T only among blocks including T provides a stronger incentive of referencing
other blocks honestly.
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• For efficiency: the current design better discourages “free riders” who only mines on empty blocks and hence saves the
effort of maintaining storage states and executing transactions. Since by producing empty blocks, those miners would
lose the transaction fees completely, rather than receiving an average revenue of total fees in that epoch.

• For fairness: the current design indeed implements a tailored version of Shapley value, which is a fair distribution of
total gains well-known in cooperative game theory.

10.4 Final Reward to Miners
The final mining reward of a block B will be added to the block author’s account as specified in the author field H(B)a. Since
the anti-cone of B may contain blocks up to 10 epochs after the EPOCH of B, the reward assigned to B effects at the end of 12
epochs after the EPOCH of B, where the balance of Ba is updated. For example, if B appears in EPOCHi, then the account Ba
receives the mining reward at the end of EPOCHi+12. The total mining reward of B is calculated as follows:

R(B)≡ Rblock(B)+Rstorage(B)+R f ee(B) (284)

In particular, note that AF(B) = 0 implies BF(B) = 0 and Rblock(B) = Rstorage(B) = R f ee(B) = 0. Thus R(B) = 0 as long
as B has a large anti-cone such that AF(B) = 0.

11. Concrete Protocol Implementation
Concretely, we set the following parameters for Conflux.

Parameter Value

Block time 0.5 s
Maximum block size bound 200 KB
Starting coinbase award 7 CFX
Starting difficulty (d0) 2×1010 = 20G
Starting block gas limit 3×107 = 30000000
Anti-cone penalty factor (γ) 100
Deferred execution 5 epochs
Mining reward freezing time 12 epochs
Snapshot period 100000 epochs
AdminControl Contract Address 0x0888000000000000000000000000000000000000
SponsorControl Contract Address 0x0888000000000000000000000000000000000001
Staking Contract Address 0x0888000000000000000000000000000000000002

In Conflux we use KEC as the collision-resistant hash function unless otherwise explicitly specified.
For authentication in the current version of Conflux, we use the same recoverable ECDSA signature scheme as in Ethereum

[3]. This method utilizes the SECP-256k1 curve.
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Appendix A. Checklist for porting EVM contract to Conflux
The Ethereum contract is also a valid Conflux contract. So Ethereum contracts can be ported to Conflux easily and have almost
same execution results. But notice that Conflux may have different behavior in the following points:

• Gas used and refund: Conflux requires less gas in SSTORE operation but no longer refunds resetting storage and
contract destruction.

• Gas fee refund: Conflux will refund at most 1/4 of gas limit. So try to provide an accurate estimation for gas limit
before signing transactions.

• Contract address: Conflux uses a different way to compute address for normal account from public key and compute
contract address in contract creation. (See equation (1) and (156) for details.) The contract developers usually don’t need
to handle this difference.

• Contract address conflict: If the contract address has existed before contract creation, Conflux will abort the contract
creation. This is different with the behavior in Ethereum.

• Collateral for storage: Conflux requires collateral for storage. Please make sure there is enough balance for storage
collateral.
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Appendix B. Difference between Ethereum and Conflux

Ethereum Conflux

(Virtual Machine and transaction execution)
Address type indistinguishable for all accounts distinct prefixes for normal (non-

contract) account, Solidity con-
tracts, and reserved contracts
(a.k.a. “precomipled contracts”)

section 3.1

Transaction field – added chainID, storageLimit and
epochHeight

section 3.3

Gas consumption and refunding all unused gas is refundable at most a quarter of gasLimit section 6.1
full gas fee charged if execution
fails on any exception

no gas fee when exception is not
caused by the sender

section 6.2.2

Cost of storage one-off gas fee gas fee + collateral section 6.5.3
SSTORE costs 5000 or 20000 gas
depending on the effect of execut-
ing this instruction, may cause a
refund of 15000 gas for clearing a
storage value

SSTORE costs Gsset= 5000 gas
and every 64B storage costs 1/16
CFX for collateral (locked until
the storage is overwritten or re-
leased)

section 7

Transaction validation any invalid transaction leads to the
whole block being invalid

invalid transactions are skipped,
while other transactions in the
same block can still be valid

section 4.2.5

a transaction is invalid if sender’s
balance cannot afford the up-front
payment for transferred value and
gas fee (indeed the whole block
will be invalid)

the transaction is valid if it satis-
fies all other assertions, but the ex-
ecution fails immediately because
of insufficient balance for the up-
front payment (sender’s nonce is
increased and gas fee is charged)

section 6.2.1

sender must pay transaction fee
from his own balance (sender’s bal-
ance cannot be zero)

a sponsor may pay for the cost of
calling a smart contract (sender’s
balance can be zero)

section 8.1

validity of a transaction cannot de-
pend on current time or height

a transaction is only valid in a spec-
ified window of epochs

section 3.3

no check on recipient’s address recipient address must have a valid
type (i.e. normal account, Solidity
contract, or reserved contract)

section 3.1

Contract creation the address of contract created by
CREATE does not depend on the
initialization code

the address of contract created by
both CREATE and CREATE2 de-
pends on the initialization code

eq. (156)

CREATE costs Gcreate = 32000,
regardless initilization code length

CREATE costs the same as
CREATE2

eq. (294)

the maximum size of the byte-code
is 24756 bytes

The maximum size of the byte-
code is 49152 bytes

section 6.3

on address conflict, reset contract
but inherit the balance

on address conflict, abort the con-
tract creation

section 6.3

Contract destruction only by SUICIDE destruction may effect on request
of the contract’s administrator (via
the AdminControl contract)

section 8.2

Internal Contract – cannot be invoked by system op-
eration, i.e. via CALLCODE or
DELEGATECALL

section 8

BLOCKHASH get the hash of one of the 256 most
recent complete blocks

get the hash of the last block, re-
turn zero if querying other blocks

appendix E.2

CHAINID EIP-1344 get the Conflux chain ID (503) appendix E.2
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Appendix C. Fee Schedule
The fee schedule G is a tuple of 35 scalar values corresponding to the relative costs, in gas, of a number of abstract operations
that a transaction may effect.

Name Value Description*

Gzero 0 Nothing paid for operations of the set Wzero.
Gbase 2 Amount of gas to pay for operations of the set Wbase.
Gverylow 3 Amount of gas to pay for operations of the set Wverylow.
Glow 5 Amount of gas to pay for operations of the set Wlow.
Gmid 8 Amount of gas to pay for operations of the set Wmid .
Ghigh 10 Amount of gas to pay for operations of the set Whigh.
Gextcode 700 Amount of gas to pay for an EXTCODESIZE operation.
Gextcodehash 400 Amount of gas to pay for an EXTCODEHASH operation.
Gbalance 400 Amount of gas to pay for a BALANCE operation.
Gsload 200 Paid for a SLOAD operation.
G jumpdest 1 Paid for a JUMPDEST operation.
Gsset 5000 Paid for an SSTORE operation.
Rsuicide 24000 Refund given (added into refund counter) for self-destructing an account.
Gsuicide 5000 Amount of gas to pay for a SUICIDE operation.
Gcreate 32000 Paid for a CREATE operation.
Gcodedeposit 200 Paid per byte for a CREATE operation to succeed in placing code into state.
Gcall 700 Paid for a CALL operation.
Gcallvalue 9000 Paid for a non-zero value transfer as part of the CALL operation.
Gcallstipend 2300 A stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.
Gnewaccount 25000 Paid for a CALL or SUICIDE operation which creates an account.
Gexp 10 Partial payment for an EXP operation.
Gexpbyte 50 Partial payment when multiplied by dlog256(exponent)e for the EXP operation.
Gmemory 3 Paid for every additional word when expanding memory.
Gtxcreate 32000 Paid by all contract-creating transactions after the Homestead transition.
Gtxdatazero 4 Paid for every zero byte of data or code for a transaction.
Gtxdatanonzero 68 Paid for every non-zero byte of data or code for a transaction.
Gtransaction 21000 Paid for every transaction.
Glog 375 Partial payment for a LOG operation.
Glogdata 8 Paid for each byte in a LOG operation’s data.
Glogtopic 375 Paid for each topic of a LOG operation.
Gsha3 30 Paid for each SHA3 operation.
Gsha3word 6 Paid for each word (rounded up) for input data to a SHA3 operation.
Gcopy 3 Partial payment for ∗COPY operations, multiplied by words copied, rounded up.
Gblockhash 20 Payment for BLOCKHASH operation.
Gquaddivisor 20 The quadratic coefficient of the input sizes of the exponentiation-over-modulo precompiled

contract.
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Appendix D. Contract destruction

The contract destruction function Ψ(σ ,A) updates the world state σ and substate A and outputs (σ ′,A′). Formally, function Ψ

is defined as follows.

σ
′ ≡ σ except: (285)

σ
′[r]≡


∅ if σ [r] =∅ ∧ σ [Ia]b = 0
(σ [r]n,σ [r]b +σ [Ia]b,

σ [r]s,σ [r]c)
if r 6= Ia ∧ Typer ∈ {[0000]2, [0001]2, [1000]2}

(σ [r]n,0,σ [r]s,σ [r]c) otherwise

(286)

σ
′[astake]s[k3]≡ σ [astake]s[k3]−σ [Ia]b if r = Ia ∨ Typer /∈ {[0000]2, [0001]2, [1000]2} (287)

σ
′[Ia]b ≡ 0 (288)

where: (289)

r ≡ µs[0] mod 2160 (290)

A′ ≡ A (291)
except: (292)

A′s ≡ As∪{Ia} (293)
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Appendix E. Virtual Machine Specification

E.1 Gas Cost
Recalling that w denotes the current operation to be executed as in (222):

w≡

{
Ib[µpc] if µpc < ‖Ib‖
STOP otherwise

The general gas cost function, C, is defined as:

C(σ ,µ, I)≡ Cmem(µ
′
i )−Cmem(µi)+



Gsset if w = SSTORE

Gexp if w = EXP∧µs[1] = 0
Gexp +Gexpbyte× (1+ blog256(µs[1])c) if w = EXP∧µs[1]> 0
Gverylow +Gcopy×dµs[2]÷32e if w = CALLDATACOPY∨

CODECOPY∨RETURNDATACOPY
Gextcode +Gcopy×dµs[3]÷32e if w = EXTCODECOPY

Glog +Glogdata×µs[1] if w = LOG0

Glog +Glogdata×µs[1]+Glogtopic if w = LOG1

Glog +Glogdata×µs[1]+2Glogtopic if w = LOG2

Glog +Glogdata×µs[1]+3Glogtopic if w = LOG3

Glog +Glogdata×µs[1]+4Glogtopic if w = LOG4

CCALL(σ ,µ) if w = CALL∨CALLCODE∨
DELEGATECALL

CSUICIDE(σ ,µ) if w = SUICIDE

Gcreate +Gsha3word×dµs[2]÷32e if w = CREATE

Gcreate +Gsha3word×dµs[2]÷32e if w = CREATE2

Gsha3 +Gsha3word×dµs[1]÷32e if w = SHA3

G jumpdest if w = JUMPDEST

Gsload if w = SLOAD

Gzero if w ∈Wzero

Gbase if w ∈Wbase

Gverylow if w ∈Wverylow

Glow if w ∈Wlow

Gmid if w ∈Wmid

Ghigh if w ∈Whigh

Gextcode if w = EXTCODESIZE

Gextcodehash if w = EXTCODEHASH

Gbalance if w = BALANCE

Gblockhash if w = BLOCKHASH

(294)

where:

Cmem(a)≡ Gmemory ·a+
⌊

a2

512

⌋
(295)

with CCALL and CSUICIDE as specified in the appropriate section below. We define the following subsets of instructions:
Wzero = {STOP, RETURN, REVERT}
Wbase = {ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,

TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, RETURNDATASIZE, POP, PC, MSIZE, GAS,
CHAINID, BEGINSUB}
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Wverylow = {ADD, SUB, NOT, LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, BYTE, SHL, SHR, SAR,
CALLDATALOAD, MLOAD, MSTORE, MSTORE8, PUSH∗, DUP∗, SWAP∗}

Wlow = {MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND, SELFBALANCE, RETURNSUB}

Wmid = {ADDMOD, MULMOD, JUMP}

Whigh = {JUMPI, JUMPSUB}

Note the memory cost component, given as the product of Gmemory and the maximum of 0 & the ceiling of the number of
words in size that the memory must be over the current number of words, µi in order that all accesses reference valid memory
whether for read or write. Such accesses must be for non-zero number of bytes.

Referencing a zero length range (e.g. by attempting to pass it as the input range to a CALL) does not require memory to be
extended to the beginning of the range. µ ′i is defined as this new maximum number of words of active memory; special-cases
are given where these two are not equal.

Note also that Cmem is the memory cost function (the expansion function being the difference between the cost before and
after). It is a polynomial, with the higher-order coefficient divided and floored, and thus linear up to 724B of memory used,
after which it costs substantially more.

While defining the instruction set, we defined the memory-expansion for range function, M, thus:

M(s, f , l)≡

{
s if l = 0
max(s,d( f + l)÷32e) otherwise

(296)

Another useful function is “all but one 64th” function L defined as:

L(n)≡ n−bn/64c (297)

E.2 Instruction Set

As previously specified in Section 6.5, these definitions take place in the final context there. In particular we assume O is the
EVM state-progression function and define the terms pertaining to the next cycle’s state (σ ′,µ ′) such that:

O(σ ,µ,A, I)≡ (σ ′,µ ′,A′, I) with exceptions, as noted (298)

Here given are the various exceptions to the state transition rules given in Section 6.5 specified for each instruction, together
with the additional instruction-specific definitions of J and C. For each instruction, also specified is ρ , the additional items
placed on the data stack, and δ , the items removed from data stack, as defined in Section 6.5. For subrountine instracutions,
further specified is ρ∗, the additional items pushed into the return stack, and δ ∗, the items removed from return stack, as defined
in Section 6.5.
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0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted. The zero-th power of zero 00 is defined to be one.

Value Mnemonic δ ρ Description

0x00 STOP 0 0 Halts execution.

0x01 ADD 2 1 Addition operation.
µ ′s[0]≡ µs[0]+µs[1]

0x02 MUL 2 1 Multiplication operation.
µ ′s[0]≡ µs[0]×µs[1]

0x03 SUB 2 1 Subtraction operation.
µ ′s[0]≡ µs[0]−µs[1]

0x04 DIV 2 1 Integer division operation.

µ ′s[0]≡

{
0 if µs[1] = 0
bµs[0]÷µs[1]c otherwise

0x05 SDIV 2 1 Signed integer division operation (truncated).

µ ′s[0]≡


0 if µs[1] = 0
−2255 if µs[0] =−2255∧ µs[1] =−1
sgn(µs[0]÷µs[1])b|µs[0]÷µs[1]|c otherwise

Where all values are treated as two’s complement signed 256-bit integers.
Note the overflow semantic when −2255 is negated.

0x06 MOD 2 1 Modulo remainder operation.

µ ′s[0]≡

{
0 if µs[1] = 0
µs[0] mod µs[1] otherwise

0x07 SMOD 2 1 Signed modulo remainder operation.

µ ′s[0]≡

{
0 if µs[1] = 0
sgn(µs[0])(|µs[0]| mod |µs[1]|) otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x08 ADDMOD 3 1 Modulo addition operation.

µ ′s[0]≡

{
0 if µs[2] = 0
(µs[0]+µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256

modulo.

0x09 MULMOD 3 1 Modulo multiplication operation.

µ ′s[0]≡

{
0 if µs[2] = 0
(µs[0]×µs[1]) mod µs[2] otherwise

All intermediate calculations of this operation are not subject to the 2256

modulo.

0x0a EXP 2 1 Exponential operation.
µ ′s[0]≡ µs[0]µs[1]

0x0b SIGNEXTEND 2 1 Extend length of two’s complement signed integer.

∀i ∈ [0..255] : µ ′s[0]i ≡

{
µs[1]t if i 6 t where t = 256−8(µs[0]+1)
µs[1]i otherwise

µs[x]i gives the ith bit (counting from zero) of µs[x]
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10s: Comparison & Bitwise Logic Operations
Value Mnemonic δ ρ Description

0x10 LT 2 1 Less-than comparison.

µ ′s[0]≡

{
1 if µs[0]< µs[1]
0 otherwise

0x11 GT 2 1 Greater-than comparison.

µ ′s[0]≡

{
1 if µs[0]> µs[1]
0 otherwise

0x12 SLT 2 1 Signed less-than comparison.

µ ′s[0]≡

{
1 if µs[0]< µs[1]
0 otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x13 SGT 2 1 Signed greater-than comparison.

µ ′s[0]≡

{
1 if µs[0]> µs[1]
0 otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x14 EQ 2 1 Equality comparison.

µ ′s[0]≡

{
1 if µs[0] = µs[1]
0 otherwise

0x15 ISZERO 1 1 Simple not operator.

µ ′s[0]≡

{
1 if µs[0] = 0
0 otherwise

0x16 AND 2 1 Bitwise AND operation.
∀i ∈ [0..255] : µ ′s[0]i ≡ µs[0]i∧µs[1]i

0x17 OR 2 1 Bitwise OR operation.
∀i ∈ [0..255] : µ ′s[0]i ≡ µs[0]i∨µs[1]i

0x18 XOR 2 1 Bitwise XOR operation.
∀i ∈ [0..255] : µ ′s[0]i ≡ µs[0]i⊕µs[1]i

0x19 NOT 1 1 Bitwise NOT operation.

∀i ∈ [0..255] : µ ′s[0]i ≡

{
1 if µs[0]i = 0
0 otherwise

0x1a BYTE 2 1 Retrieve single byte from word.

∀i ∈ [0..255] : µ ′s[0]i ≡

{
µs[1](i+8µs[0]) if i < 8∧µs[0]< 32
0 otherwise

For the Nth byte, we count from the left (i.e. N=0 would be the most significant
in big endian).

0x1b SHL 2 1 Left shift operation.
µ ′s[0]≡ (µs[1]×2µs[0]) mod 2256

0x1c SHR 2 1 Logical right shift operation.
µ ′s[0]≡ bµs[1]÷2µs[0]c

0x1d SAR 2 1 Arithmetic (signed) right shift operation.
µ ′s[0]≡ bµs[1]÷2µs[0]c
Where µ ′s[0] and µs[1] are treated as two’s complement signed 256-bit integers,
while µs[0] is treated as unsigned.
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20s: SHA3

Value Mnemonic δ ρ Description

0x20 SHA3 2 1 Compute Keccak-256 hash.
µ ′s[0]≡ KEC(µm[µs[0] . . .(µs[0]+µs[1]−1)])
µ ′i ≡M(µi,µs[0],µs[1])
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30s: Environmental Information

Value Mnemonic δ ρ Description

0x30 ADDRESS 0 1 Get address of currently executing account.
µ ′s[0]≡ Ia

0x31 BALANCE 1 1 Get balance of the given account.

µ ′s[0]≡

{
σ [µs[0]]b if σ [µs[0] mod 2160] 6=∅
0 otherwise

0x32 ORIGIN 0 1 Get execution origination address.
µ ′s[0]≡ Io
This is the sender of original transaction; it is never an account with
non-empty associated code.

0x33 CALLER 0 1 Get caller address.
µ ′s[0]≡ Is
This is the address of the account that is directly responsible for
this execution.

0x34 CALLVALUE 0 1 Get deposited value by the instruction/transaction responsible for
this execution.
µ ′s[0]≡ Iv

0x35 CALLDATALOAD 1 1 Get input data of current environment.
µ ′s[0]≡ Id[µs[0] . . .(µs[0]+31)] with Id[x] = 0 if x > ‖Id‖
This pertains to the input data passed with the message call
instruction or transaction.

0x36 CALLDATASIZE 0 1 Get size of input data in current
environment.
µ ′s[0]≡ ‖Id‖
This pertains to the input data passed with the message call
instruction or transaction.

0x37 CALLDATACOPY 3 0 Copy input data in current environment to memory.

∀i ∈ {0 . . .µs[2]−1} : µ ′m[µs[0]+ i]≡

{
Id[µs[1]+ i] if µs[1]+ i < ‖Id‖
0 otherwise

The additions in µs[1]+ i are not subject to the 2256 modulo.
µ ′i ≡M(µi,µs[0],µs[2])
This pertains to the input data passed with the message call instruction
or transaction.

0x38 CODESIZE 0 1 Get size of code running in current environment.
µ ′s[0]≡ ‖Ib‖

0x39 CODECOPY 3 0 Copy code running in current environment to memory.

∀i ∈ {0 . . .µs[2]−1} : µ ′m[µs[0]+ i]≡

{
Ib[µs[1]+ i] if µs[1]+ i < ‖Ib‖
STOP otherwise

µ ′i ≡M(µi,µs[0],µs[2])
The additions in µs[1]+ i are not subject to the 2256 modulo.

0x3a GASPRICE 0 1 Get price of gas in current environment.
µ ′s[0]≡ Ip
This is gas price specified by the originating transaction.

0x3b EXTCODESIZE 1 1 Get size of an account’s code.
µ ′s[0]≡ ‖b‖
where KEC(b)≡ σ [µs[0] mod 2160]c
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0x3c EXTCODECOPY 4 0 Copy an account’s code to memory.

∀i ∈ {0 . . .µs[3]−1} : µ ′m[µs[1]+ i]≡

{
b[µs[2]+ i] if µs[2]+ i < ‖b‖
STOP otherwise

where KEC(b)≡ σ [µs[0] mod 2160]c
µ ′i ≡M(µi,µs[1],µs[3])
The additions in µs[2]+ i are not subject to the 2256 modulo.

0x3d RETURNDATASIZE 0 1 Get size of output data from the previous call from the current
environment.
µ ′s[0]≡ ‖µo‖

0x3e RETURNDATACOPY 3 0 Copy output data from the previous call to memory.

∀i ∈ {0 . . .µs[2]−1} : µ ′m[µs[0]+ i]≡

{
µo[µs[1]+ i] if µs[1]+ i < ‖µo‖
0 otherwise

The additions in µs[1]+ i are not subject to the 2256 modulo.
µ ′i ≡M(µi,µs[0],µs[2])

0x3f EXTCODEHASH 1 1 Get hash of an account’s code.

µ ′s[0]≡

{
0 if DEAD(σ ,µs[0] mod 2160)

σ [µs[0] mod 2160]c otherwise

40s: Block Information

Value Mnemonic δ ρ Description

0x40 BLOCKHASH 1 1 Get the hash of the last block in block order.
In Conflux, we only maintain the block hash of the previous block.
When querying other block numbers, the returned result is always 0.

µ ′s[0]≡

{
KEC(IHL [−1]) if µs[0] = |IHL |−1
0 otherwise

0x41 COINBASE 0 1 Get the block’s beneficiary address.
µ ′s[0]≡ IHc

0x42 TIMESTAMP 0 1 Get the block’s timestamp.
µ ′s[0]≡ IHs

0x43 NUMBER 0 1 Get the block’s index in total order. (The index of genesis block is 0.)
µ ′s[0]≡ |IHL |

0x44 DIFFICULTY 0 1 Get the block’s difficulty.
µ ′s[0]≡ IHd

0x45 GASLIMIT 0 1 Get the block’s gas limit.
µ ′s[0]≡ IH`

0x46 CHAINID 0 1 Get the chain ID.
µ ′s[0]≡ 2

0x47 SELFBALANCE 0 1 Get balance of the currently executing account.

µ ′s[0]≡

{
σ [Ia]b if σ [Ia mod 2160] 6=∅
0 otherwise
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50s: Stack, Memory, Storage and Flow Operations

Value Mnemonic δ ρ Description

0x50 POP 1 0 Remove item from stack.

0x51 MLOAD 1 1 Load word from memory.
µ ′s[0]≡ µm[µs[0] . . .(µs[0]+31)]
µ ′i ≡max(µi,d(µs[0]+32)÷32e)
The addition in the calculation of µ ′i is not subject to the 2256 modulo.

0x52 MSTORE 2 0 Save word to memory.
µ ′m[µs[0] . . .(µs[0]+31)]≡ µs[1]
µ ′i ≡max(µi,d(µs[0]+32)÷32e)
The addition in the calculation of µ ′i is not subject to the 2256 modulo.

0x53 MSTORE8 2 0 Save byte to memory.
µ ′m[µs[0]]≡ (µs[1] mod 256)
µ ′i ≡max(µi,d(µs[0]+1)÷32e)
The addition in the calculation of µ ′i is not subject to the 2256 modulo.

0x54 SLOAD 1 1 Load word from storage.
µ ′s[0]≡ σ [Ia]s[µs[0]]v

0x55 SSTORE 2 0 Save word and its owner to storage
(σ ′,A∗)≡Φ(σ , Ia,µs[0],µs[1], Ii)
A′ ≡ AdA∗

where Φ is defined in section 7.1

0x56 JUMP 1 0 Alter the program counter.
JJUMP(µ)≡ µs[0]
This has the effect of writing said value to µpc. See (233) in Section 6.5.

0x57 JUMPI 2 0 Conditionally alter the program counter.

JJUMPI(µ)≡

{
µs[0] if µs[1] 6= 0
µpc +1 otherwise

This has the effect of writing said value to µpc. See (233) in Section 6.5.

0x58 PC 0 1 Get the value of the program counter prior to the increment
corresponding to this instruction.
µ ′s[0]≡ µpc

0x59 MSIZE 0 1 Get the size of active memory in bytes.
µ ′s[0]≡ 32µi

0x5a GAS 0 1 Get the amount of available gas, including the corresponding reduction
for the cost of this instruction.
µ ′s[0]≡ µg

0x5b JUMPDEST 0 0 Mark a valid destination for jumps.
This operation has no effect on machine state during execution.
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50s: Stack, Memory, Storage and Flow Operations – Subroutine Operations

Note 1: Here we list columns of δ ∗ and ρ∗ because JUMPSUB and RETURNSUB may change the return stack µr.
However, µr is only alterable by these two instructions, and hence there is no need to validate popped values.

Note 2: The actual state of the return stack is neither observable by EVM code nor consensus-critical to the protocol.
Thus, a node implementor may code JUMPSUB to unobservably push pc on the return stack rather than pc+1,
which is allowed so long as the next RETURNSUB would observably return control to the pc+1 location.

Value Mnemonic δ ρ δ ∗ ρ∗ Description

0x5c BEGINSUB 0 0 0 0 Marks the entry point to a subroutine.
Attempted execution of a BEGINSUB causes an abort:
terminate execution with an Invalid Sub-entry exception.

0x5d RETURNSUB 0 0 1 0 Returns from a subroutine.
If ‖µr‖= 0, then abort:
terminate execution with a Return Stack Underflow exception.
Otherwise JRETURNSUB(µ)≡ µr[0]
This has the effect of writing said value to µpc. See (233) in Section 6.5.

0x5e JUMPSUB 1 0 0 1 Jumps to a defined BEGINSUB subroutine and transfers control to it.
If ‖µr‖= 1023, then abort:
terminate execution with an Out Of Return Stack exception.
Else if Ib [µs[0]] 6= BEGINSUB then abort:
terminate execution with a Bad Jump Destination exception.
Otherwise:
µ ′r[0]≡ µpc +1
JJUMPSUB(µ)≡ µs[0]+1
This has the effect of writing said value to µpc. See (233) in Section 6.5.
In case µs[0]+1≥ ‖Ib‖, i.e. the resulting pc is beyond the last instruction,
then the opcode is implicitly a STOP, which is not an error.

60s & 70s: Push Operations

Value Mnemonic δ ρ Description

0x60 PUSH1 0 1 Place 1 byte item on stack.
µ ′s[0]≡ c(µpc +1)

where c(x)≡

{
Ib[x] if x < ‖Ib‖
0 otherwise

The bytes are read in line from the program code’s bytes array.
The function c ensures the bytes default to zero if they extend past the limits.
The byte is right-aligned (takes the lowest significant place in big endian).

0x61 PUSH2 0 1 Place 2-byte item on stack.
µ ′s[0]≡ c

(
(µpc +1) . . .(µpc +2)

)
with c(x)≡ (c(x0), ...,c(x‖x‖−1)) with c as defined as above.
The bytes are right-aligned (takes the lowest significant place in big endian).

...
...

...
...

...

0x7f PUSH32 0 1 Place 32-byte (full word) item on stack.
µ ′s[0]≡ c

(
(µpc +1) . . .(µpc +32)

)
where c is defined as above.
The bytes are right-aligned (takes the lowest significant place in big endian).
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80s: Duplication Operations

Value Mnemonic δ ρ Description

0x80 DUP1 1 2 Duplicate 1st stack item.
µ ′s[0]≡ µs[0]

0x81 DUP2 2 3 Duplicate 2nd stack item.
µ ′s[0]≡ µs[1]

...
...

...
...

...

0x8f DUP16 16 17 Duplicate 16th stack item.
µ ′s[0]≡ µs[15]

90s: Exchange Operations

Value Mnemonic δ ρ Description

0x90 SWAP1 2 2 Exchange 1st and 2nd stack items.
µ ′s[0]≡ µs[1]
µ ′s[1]≡ µs[0]

0x91 SWAP2 3 3 Exchange 1st and 3rd stack items.
µ ′s[0]≡ µs[2]
µ ′s[2]≡ µs[0]

...
...

...
...

...

0x9f SWAP16 17 17 Exchange 1st and 17th stack items.
µ ′s[0]≡ µs[16]
µ ′s[16]≡ µs[0]

a0s: Logging Operations

For all logging operations, the state change is to append an additional log entry on to the substate’s log series:
A′l ≡ Al · (Ia, t,µm[µs[0] . . .(µs[0]+µs[1]−1)])
and to update the memory consumption counter:
µ ′i ≡M(µi,µs[0],µs[1])
The entry’s topic series, t, differs accordingly:

Value Mnemonic δ ρ Description

0xa0 LOG0 2 0 Append log record with no topics.
t≡ ε

0xa1 LOG1 3 0 Append log record with one topic.
t≡ (µs[2])

...
...

...
...

...

0xa4 LOG4 6 0 Append log record with four topics.
t≡ (µs[2],µs[3],µs[4],µs[5])
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f0s: System operations

Value Mnemonic δ ρ Description

0xf0 CREATE 3 1 Create a new account with associated code.
i≡ µm[µs[1] . . .(µs[1]+µs[2]−1)]
ζ ≡∅

(σ ′,µ ′g,A
+,o)≡


Λ(σ∗, Ia, Io, It · Ia, Ii,L(µg), Ip,µs[0], i, Ie +1,ζ , Iw) if µs[0]6 σ [Ia]b

∧ Ie < 1024(
σ ,µg,∅

)
otherwise

σ∗ ≡ σ except σ∗[Ia]n = σ [Ia]n +1
µ ′s[0]≡ x
where x = 0 if the code execution for this operation failed due to an
exceptional halting (or for a REVERT) σ ′ =∅, or Ie = 1024
(the maximum call depth limit is reached) or µs[0]> σ [Ia]b (balance of the caller
is too low to fulfil the value transfer); and otherwise x = A(Ia,σ [Ia]n,ζ , i), the
address of the newly created account (156).
µ ′i ≡M(µi,µs[1],µs[2])
µ ′o ≡ ε

Thus the operand order is: value, input offset, input size.

0xf1 CALL 7 1 Message-call into an account.
i≡ µm[µs[3] . . .(µs[3]+µs[4]−1)]

(σ ′,g′,A+,o)≡


Θ(σ , Ia, Io, t, It · Ia, Ii, t,CCALLGAS(µ),

Ip,µs[2],µs[2], i, Ie +1, Iw ∧ r)
if p

(σ ,g,∅,ε) otherwise
p≡ µs[2]6 σ [Ia]b ∧ Ie < 1024 ∧ Typet ∈ {[0000]2, [0001]2, [1000]2}
r ≡ t /∈ It ∨ t = Ia
n≡min({µs[6],‖o‖})
µ ′m[µs[5] . . .(µs[5]+n−1)] = o[0 . . .(n−1)]
µ ′o = o
µ ′g ≡ µg +g′

µ ′s[0]≡ x
A′ ≡ AdA+

t ≡ µs[1] mod 2160

where x = 0 if the code execution for this operation failed due to an
exceptional halting (or for a REVERT) σ ′ =∅ or if p = False
which means EVM prevents this call; x = 1 otherwise.
µ ′i ≡M(M(µi,µs[3],µs[4]),µs[5],µs[6])
Thus the operand order is: gas, to, value, in offset, in size, out offset, out size.
CCALL(σ ,µ)≡CGASCAP(σ ,µ)+CEXTRA(σ ,µ)

CCALLGAS(σ ,µ)≡

{
CGASCAP(σ ,µ)+Gcallstipend if µs[2] 6= 0
CGASCAP(σ ,µ) otherwise

CGASCAP(σ ,µ)≡

{
min{L(µg−CEXTRA(σ ,µ)),µs[0]} if µg ≥CEXTRA(σ ,µ)

µs[0] otherwise
CEXTRA(σ ,µ)≡ Gcall +CXFER(µ)+CNEW(σ ,µ)

CXFER(µ)≡

{
Gcallvalue if µs[2] 6= 0
0 otherwise

CNEW(σ ,µ)≡

{
Gnewaccount if DEAD(σ ,µs[1] mod 2160)∧µs[2] 6= 0
0 otherwise
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0xf2 CALLCODE 7 1 Message-call into this account with an alternative account’s code.
Exactly equivalent to CALL except:

(σ ′,g′,A+,o)≡


Θ(σ∗, Ia, Io, Ia, It · Ia, Ii,

t,CCALLGAS(µ), Ip,µs[2],
µs[2], i, Ie +1, Iw)

if p

(σ ,g,∅,ε) otherwise
where p≡ µs[2]6 σ [Ia]b ∧ Ie < 1024 ∧ Typet ∈ {[0000]2, [0001]2, [1000]2}.
Note the change in the fourth parameter to the call Θ from the 2nd stack value
µs[1] (as in CALL) to the present address Ia. This means that the recipient is in
fact the same account as at present, simply that the code is overwritten.

0xf3 RETURN 2 0 Halt execution returning output data.
HRETURN(µ)≡ µm[µs[0] . . .(µs[0]+µs[1]−1)]
This has the effect of halting the execution at this point with output defined.
See section 6.5.
µ ′i ≡M(µi,µs[0],µs[1])

0xf4 DELEGATECALL 6 1 Message-call into this account with an alternative account’s code, but
persisting the current values for sender and value.
Compared with CALL, DELEGATECALL takes one fewer arguments. The
omitted argument is µs[2]. As a result, µs[3], µs[4], µs[5] and µs[6] in the
definition of CALL should respectively be replaced with µs[2], µs[3], µs[4] and
µs[5]. Otherwise it is equivalent to CALL except:

(σ ′,g′,A+,o)≡


Θ(σ∗, Is, Io, Ia, It · Ia, Ii, t,CCALLGAS(µ),

Ip,0, Iv, i, Ie +1, Iw)
if p

(σ ,g,∅,ε) otherwise
where p≡ Iv 6 σ [Ia]b ∧ Ie < 1024 ∧ Typet ∈ {[0000]2, [0001]2, [1000]2}.
Note the changes (in addition to that of the fourth parameter) to the second
and ninth parameters to the call Θ.
This means that the recipient is in fact the same account as at present, simply
that the code is overwritten and the context is almost entirely identical.

0xf5 CREATE2 4 1 Create a new account with associated code.
Exactly equivalent to CREATE except:
The salt ζ ≡ µs[3].

0xfa STATICCALL 6 1 Static message-call into an account.
Exactly equivalent to CALL except:
The argument µs[2] is replaced with 0.
The deeper argument µs[3], µs[4], µs[5] and µs[6] are respectively replaced
with µs[2], µs[3], µs[4] and µs[5].
The last argument of Θ is False.

0xfd REVERT 2 0 Halt execution reverting state changes but returning data and remaining gas.
The effect of this operation is described in (217).
For the gas calculation, we use the memory expansion function,
µ ′i ≡M(µi,µs[0],µs[1])

0xfe INVALID ∅ ∅ Designated invalid instruction.

0xff SUICIDE 1 0 Halt execution and register account for later deletion.
(σ ′,A′)≡Ψ(σ ,A)
where Ψ is defined in section D.

CSUICIDE(σ ,µ)≡ Gsuicide +

{
Gnewaccount if n
0 otherwise

n≡ DEAD(σ∗,µs[0] mod 2160)∧σ [Ia]b 6= 0
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Appendix F. Multi-point Evaluation Hashing

F.1 Definitions
We employ the following definitions:

Name Value Description

Jwordbytes 4 Bytes in word.
Jdatasetinit 232 Bytes in dataset at genesis.
Jdatasetgrowth 224 Dataset growth per stage.
Jcacheinit 224 Bytes in cache at genesis.
Jcachegrowth 216 Cache growth per stage.
Jstage 219 Epoches per stage.
Jcacherounds 3 Number of rounds in cache production.
Jmixbytes 256 mix length in bytes.
Jhashbytes 64 Hash length in bytes.
Jparents 256 Number of parents of each dataset element.
Jpow 1024 Number of polynomial coefficients in multiple point evaluation.
Jaccesses 32 Number of accesses in hashimoto loop.
Jwarpsize 32 Jpow/Jaccesses
Jmod 1032193 Modulus in multiple point evaluation.

F.2 Size of Dataset and Cache
The size for the hash function’s cache c ∈ B∗ and dataset d ∈ B∗ depend on the stage, which in turn depends on the block height
Hh.

Estage(Hh)≡
⌊

Hh

Jstage

⌋
(299)

The size of the dataset growth by Jdatasetgrowth bytes, and the size of the cache by Jcachegrowth bytes, every stage. In order to
avoid regularity leading to cyclic behavior, the size must be a prime number. Therefore the size is reduced by a multiple of
Jmixbytes, for the dataset, and Jhashbytes for the cache. Let dsize = ‖d‖ be the size of the dataset, which is calculated using

dsize ≡ Eprime(Jdatasetinit + Jdatasetgrowth ·Estage,Jmixbytes) (300)

The size of the cache, csize, is calculated using

csize ≡ Eprime(Jcacheinit + Jcachegrowth ·Estage,Jhashbytes) (301)

where Eprime(x,y) asserts x/y is an integer and returns the largest number x′ such that x′ < x and x′ = p · y for some prime
number p.

Eprime(x,y)≡ max
x′<x ∧ IsPrime(x′/y)

x′ (302)

F.3 Stage Dataset Generation
In order to generate the dataset d for stage Jstage, we need the cache c, which is an array of bytes. It depends on the cache size
csize and the seed hash s ∈ B256.

F.3.1 Seed hash
The seed hash is different for every stage. For the first stage it is the Keccak-256 hash of a series of 256 bits (32 bytes) of zeros.
For every other stage it is always the Keccak-256 hash of the previous seed hash:

s≡ KEC(Estage(Hh))(0256) (303)

where 0256 denotes 256 bits of zeros. (Recalling that f (n) represents calling function f in n times recursively.)
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F.3.2 Cache
The cache production process involves using the seed hash to first sequentially filling up csize bytes of memory, then performing
Jcacherounds passes of the RandMemoHash algorithm created by [4]. The initial cache c′ will be constructed as follows.

Recalling that KEC512 denotes the Keccak-512 hash function whose output length is 512 bits (64 single bytes), we define
initial cache c′ can be defined as:

c′[i]≡ KEC512(i)(s), ∀ i ∈ {0,1,2, . . . ,n−1} (304)

where n denote the number of elements in cache:

n≡ csize/Jhashbytes (305)

The cache c, consisting of n items of KEC512 hash values, is calculated by performing Jcacherounds rounds of the RandMem-
oHash algorithm to the initial cache c′:

c≡ E(Jcacherounds)
RMH (c′) (306)

Every single round of the RandMemoHash algorithm modifies each subset of the cache as follows:

ERMH(x)≡
(
Ermh(x,0),Ermh(x,1), ...,Ermh(x,n−1)

)
(307)

Ermh(x, i)≡ KEC512(x′[(i−1+n) mod n]⊕x′[x′[i][0] mod n]) with x′[ j] =

{
Ermh(x, j) j < i
x[ j] j ≥ i

(308)

where x′[i][0] denotes the first word of x′[i].

F.3.3 Full dataset calculation
Essentially, we combine data from Jparents pseudorandomly selected cache nodes, and hash that to compute the dataset. The
entire dataset d is then generated by a number of items, each of Jhashbytes bytes in size:

d[i]≡ Edatasetitem(c, i), ∀ 0≤ i < dsize/Jhashbytes (309)

In order to calculate the single item we use an algorithm EFNV : N32×N32→N32 inspired by the FNV hash [5] in some cases as
a non-associative substitute for XOR.

EFNV(x,y)≡ ((x×0x01000193)⊕y) mod 232 (310)

When EFNV receives input in B32, it interprets it as a little-endian encoding integer in N32.
The single item of the dataset can now be calculated by iteratively mixing items from the cache c as follows:

Edatasetitem(c, i)≡ KEC512
(

mJparents

)
(311)

where m j is updated from m j−1 by function Emix. m0 is initialized with the hash value computed from cache c and index i.

m j ≡ Emix(c, i,m j−1, j−1), ∀1≤ j ≤ Jparents (312)
m0 ≡ KEC512(c[i mod n]⊕ i) (313)

Emix(c, i,m, p)≡ E∗FNV

(
m,c[EFNV(i⊕ p, m

[
p mod Jhashbytes/Jwordbytes]) mod n

])
(314)

Here, i is regarded as a 512-bit string in little-endian and E∗FNV denotes the element-wise invocation of EFNV over Jhashbytes-bit
string, which is interpreted as an array of words in little-endian.

F.4 Proof-of-work function
Essentially, we maintain a “mix” of Jmixbytes bytes wide, and repeatedly sequentially fetch Jmixbytes bytes from the full dataset and
use the EFNV function to combine it with the mix. Jmixbytes bytes of sequential access are used so that each round of the algorithm
always fetches a full page from RAM, minimizing translation lookaside buffer misses which ASICs would theoretically be able
to avoid.

If the output of this algorithm is below the desired target, then the nonce is valid. Note that the extra application of KEC at
the end ensures that there exists an intermediate nonce which can be provided to prove that at least a small amount of work was
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done; this quick outer PoW verification can be used for anti-DDoS purposes. It also serves to provide statistical assurance that
the result is an unbiased, 256 bit number.

The MpEthash function takes Hn , which is the hash of the header excluding the nonce fields, i.e. Hn ≡KEC(RLP(H−n)),
together with the nonce Hn and the dataset d from appendix F.3.3 as input. The output of MpEthash is the Keccak-256 hash of
the concatenation of the seed hash sh ∈ B512 and the compressed mix mc ∈ B256:

MpEthash(Hn ,Hn,d)≡ KEC(sh ◦mc) (315)

F.4.1 Multi-point mix
The multi-points p ∈ NJaccesses

64 and multi-point mix mp ∈ N64 is calculated from the header Hn , Hn as follows:

p≡ p
(
Hn ,Hn

)
≡ Emp−eval(a,b,c,w,nlow,z) (316)

mp ≡ mp (p)≡ EFNV−compress (p,Jaccesses) (317)

with arguments and functions described in the rest of this section.
Interpreting Hn as a 4-element array of N64 encoded in little-endian, input arguments a,b,c,w ∈ N64,nlow ∈ N are defined

as follows:

a≡ Eremap(Hn [0]) (318)
b≡ Eremap(Hn [1]) (319)
c≡ Eremap(Eproper c(a,b,Hn [2])) (320)
w≡ Eremap(Hn [3]) (321)

nhigh ≡ b(Hn mod 264)/Jwarpsizec (322)
nlow ≡ Hn mod Jwarpsize (323)

where

Eproper power(h)≡ argmax
x|h ∧ gcd(x,Jmod−1)=1

x (324)

Eremap(h)≡ 11Eproper power((h mod (Jmod−2))+1) mod Jmod (325)
Eproper c(a,b,h)≡ argmin

x≥h ∧ Jmod -b2−4a·Eremap(x)
x (326)

The last argument z is an array of Jpow = Jaccesses× Jwarpsize items drawn from N32. More specifically, z[i] is defined as:

z[i · Jwarpsize + j]≡ ESip,2, j+4

((
nhigh · Jwarpsize + j

)
mod 264

)
mod Jmod , ∀0≤ i < Jaccesses,0≤ j < Jwarpsize (327)

where the ESip,c,d refers to the SipHash-c-d function with a different key initialization process by vi ≡ Hn [i] (i ∈ {0,1,2,3}).
See [6] for more details about SipHash function.

The multiple points p is an array of Jaccesses many 32-bit integers. Function Emp−eval evaluated the polynomial Epolynomial
on multiple points x[i] for i ∈ {0,1, . . . ,Jaccesses−1} to get p.

Emp−eval(a,b,c,w,nlow,z)≡
{

Epolynomial (x[0]) ,Epolynomial (x[1]) , · · · ,Epolynomial (x[Jaccesses−1])
}

(328)

where x is an array of words defined as:

x[i]≡ a ·w2·(i·Jwarpsize+nlow)+b ·wi·Jwarpsize+nlow + c, ∀ 0≤ i≤ Jaccesses−1 (329)

and the Epolynomial function is a polynomial with coefficients specified by z:

Epolynomial(x)≡

(
Jpow−1

∑
j=0

z[ j] · x j

)
mod Jmod (330)

The FNV-compress function EFNV−compress is defined over (N32)
∗×N→N64 and used to compress an array of N32 elements

into a single N64 element:

EFNV−compress(p, i)≡

{
064 if i < 1
EFNV64 (EFNV−compress(p, i−1),p[i−1]) otherwise

(331)

where input items in N32 are interpreted as integers in N64, and EFNV64 : N64×N64→ N64 naturally extends EFNV as follows:

EFNV64(x,y)≡ ((x×0x01000193)⊕y) mod 264 (332)



Conflux Protocol Specification — 63/67

F.4.2 Half mix
The half mix sh ∈ B512 = BYJhashbytes is defined on Hn and mp as follows:

sh ≡ sh(Hn ,mp)≡ KEC512
(
Hn ◦LE(mp)

)
(333)

where LE(mp) returns the little-endian encoding of the compressed multi-point mix mp.

F.4.3 Compressed mix
The compressed mix mc ∈ B256 is obtained from the seed hash sh ∈ B512 = BYJhashbytes , the dataset d ∈ BYdsize and the multiple
points p ∈ (N64)

Jaccesses :

mc ≡mc
(
sh,d,p)≡ Ecompress

(
mJaccesses

)
(334)

where mJaccesses and Ecompress are defined as follows.
The initial mix m0 is an array of nmixw words obtained by replicating the seed hash sh for nmixh times, with nmixw,nmixh

defined as:

nmixw ≡
Jmixbytes

Jwordbytes
(335)

nmixh ≡
Jmixbytes

Jhashbytes
(336)

Formally, the initial mix m0 ∈ BYJmixbytes =
(
BYJwordbytes

)nmixw
is defined as:

m0 ≡ sh ◦ · · · ◦ sh︸ ︷︷ ︸
nmixh many copies of sh

(337)

Every m j is updated from m j−1 as follows:

m j[i]≡ EFNV

(
m j−1[i],d

[
(p j ·nmixh + bi/nhashwc) mod 232] [i mod nhashw]

)
, ∀0≤ j < Jaccesses,0≤ i < nmixw (338)

p j ≡ EFNV

(
j⊕ sh[0]⊕p[ j],m j−1 [ j mod nmixw]

)
mod

dsize

Jmixbytes
, ∀0≤ j < Jaccesses (339)

where nhashw ≡ Jhashbytes/Jwordbytes. We regard a Jhashbytes-bit string as an array of nhashw words here.
The Ecompress function converts Jmixbytes-byte mix, which is an array of nmixw = 64 words, into an 8-word array, with the i-th

word defined as follows:

Ecompress(m)[i]≡ EFNV

(
EFNV(EFNV(EFNV(m[4i],m[4i+1]),m[4i+2]),m[4i+3]),

EFNV(EFNV(EFNV(m[4i+32],m[4i+33]),m[4i+34]),m[4i+35])
)
, ∀0≤ i≤ 7 (340)

The array obtained by applying Ecompress on mJaccesses is indeed the compressed mix mc by eq. (334).
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Appendix G. Internal contracts

〈NOTE: The following fomulars are for Oceanus version.〉
Conflux introduces internal contracts for specific usage. A high-level description for the internal contracts is given in

Section 8. Currently, Conflux has three internal contracts with addresses as follows.

aadmin ≡ 0x0888000000000000000000000000000000000000 (341)
asponsor ≡ 0x0888000000000000000000000000000000000001 (342)

astake ≡ 0x0888000000000000000000000000000000000002 (343)

When the recipient’s address r is one of the internal contracts, Conflux processes Ξinternal(σ
∗,g, I) and returns (σ∗∗,g∗∗,A,o).

G.1 Interfaces and gas required
In execution of internal contracts, the call data Id is interpreted as a function call to Solidity interface. Function V (σ ,c, Id)
gives the gas used for internal contract execution by called function and parameters.

Address Ia Solidity interface Formal parameters V (σ ,c, Id)

aadmin
set_admin(address,address) a0,a1 ∈ B160 Gsset
destroy(address) a0 ∈ B160 Gsset

asponsor

set_sponsor_for_gas(address,uint256) a0 ∈ B160,n1 ∈ N256 Gsset
set_sponsor_for_collateral(address) a0 ∈ B160 2×Gsset
add_privilege(address[]) a ∈ B∗160 |a|×Gsset
remove_privilege(address[]) a ∈ B∗160 |a|×Gsset

astake

deposit(uint256) n0 ∈ N256 2× (|σ [s]deposit |+1)×Gsset
withdraw(uint256) n0 ∈ N256 2×|σ [s]deposit |×Gsset
vote_lock(uint256,uint256) n0,n1 ∈ N256 2×|1+ToList(σ [s]vote)|×Gsset

where σ [s]′vote is defined by σ [s]vote removing all the key x with σ [s]vote[x] = σ [s]vote[x−1]

G.2 Internal contracts exceptions
The execution of internal contracts may fail in the following cases

• Conflux parses the call data Id as solidity function call. In case the call data doesn’t match any solidity function interfaces
list as follows, or the format is incorrect, the execution fails.

• The recipient is inconsistent with the code address or internal contract is called by STATICCALL, i.e., Ir 6= c or Iw =⊥.

• The gas g passed in is not enough for internal contract execution, i.e., g <V (σ∗,c, Id).

• The staking vote contract astake forbids value transfer to prevent misusing, i.e., Ia = astake ∧ Iv 6= 0. 6

• If other exceptions met during the execution, the execution also fails. See the following for details.

Whenever the execution fails, the return values are set as

(σ∗∗,g∗∗,A,o)≡ (∅,0,A0,∅) (344)

If the execution is successful, the remained gas and return data are set as

(g∗∗,o)≡ (g−V (σ∗,c, Id),ε) (345)

The resultant world-state σ∗∗ and substate A is computed depending on interfaces.

G.3 Admin Contract
The admin contract with address aadmin gives two interfaces.

6User don’t need to transfer balance to staking vote contract in staking. The transferred value to staking vote contract will lost.
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G.3.1 Set administration
For interface set_admin(address,address), let a0,a1 ∈ B160 be the address parameters.

A≡ A0 (346)
σ
∗∗ ≡ σ

∗ except: (347)
σ
∗∗[a0]a ≡ a1 if Typea0

= [1000]2 ∧ Io = σ
∗[a0]a (348)

G.3.2 Destory contract
For interface destroy(address), let a0 ∈ B160 be the address parameters. The execution fails if

σ
∗[a0]o > 0 ∧ Io = σ

∗[a0]a (349)

If the execution not fails,

(σ∗∗,A)≡
{

(σ∗,A0) Io 6= σ∗[a0]a
Ψ(σ∗,A0) Io = σ∗[a0]a

(350)

where Ψ is defined in section D.

G.4 Sponsorship Contract
The sponsorship contract with address asponsor gives four interfaces.

G.4.1 Set sponsor for gas
For interface set_sponsor_for_gas(address,uint256), let a0 ∈ B160,n1 ∈ N256 be the address parameters. The
execution fails if

σ
∗[a0] = /0 ∨ Typea0

6= [1000]2 ∨ σ
∗[asponsor]b < 1000×n1 ∨ n1 ≤ σ

∗[a0]p[limit]≤ σ
∗[a0]p[gas]b

∨ (σ∗[a0]p[gas]a 6= Is ∧ σ
∗[asponsor]b ≤ σ

∗[a0]p[gas]b) (351)

If the execution not fails,

A≡ A0 (352)
σ
∗∗ ≡ σ

∗ except: (353)
σ
∗∗[asponsor]b ≡ 0 (354)

σ
∗∗[a0]p[limit]≡ n1 (355)

σ
∗∗[a0]p[gas]a ≡ a0 (356)

σ
∗∗[a0]p[gas]b ≡

{
σ∗[asponsor]b +σ∗[a0]p[gas]b p = Is

σ∗[asponsor]b p 6= Is
(357)

σ
∗∗[p]b ≡

{
σ∗[p]b p = Is

σ∗[p]b +σ∗[a0]p[gas]b p 6= Is
(358)

where: (359)
p≡ σ

∗[a0]p[gas]a (360)

G.4.2 Set sponsor for collateral
For interface set_sponsor_for_collateral(address), let a0 ∈ B160 be the address parameter. The execution fails
if

σ
∗[a0] = /0 ∨ Typea0

6= [1000]2 ∨ σ
∗[asponsor]b = 0

∨ (σ∗[a0]p[col]a 6= Is ∧ σ
∗[asponsor]b ≤ σ

∗[a0]p[col]b) (361)
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If the execution not fails,

A≡ A0 (362)
σ
∗∗ ≡ σ

∗ except: (363)
σ
∗∗[asponsor]b ≡ 0 (364)

σ
∗∗[a0]p[col]a ≡ a0 (365)

σ
∗∗[a0]p[col]b ≡

{
σ∗[asponsor]b +σ∗[a0]p[col]b p = Is

σ∗[asponsor]b p 6= Is
(366)

σ
∗∗[p]b ≡

{
σ∗[p]b p = Is

σ∗[p]b +σ∗[a0]p[col]b p 6= Is
(367)

where: (368)
p≡ σ

∗[a0]p[col]a (369)

G.4.3 Add addresses to whitelist
For interface add_privilege(address[]), let a ∈ B∗160 be the address list parameter. The execution fails if

TypeIs 6= [1000]2. (370)

If the execution not fails,

(σ∗∗,A)≡
(

σ
(n),A0

)
(371)

where: (372)
n≡ |a| (373)

σ
(0) ≡ σ

∗ (374)

∀ j ∈ [n], σ
( j) ≡Φ(σ ( j−1),asponsor, Is ·a[ j−1],1, Ii) (375)

Function Φ is defined in Section 7.1.

G.4.4 Remove addresses to whitelist
For interface remove_privilege(address[]), let a ∈ B∗160 be the address list parameter. The execution fails if

TypeIs 6= [1000]2. (376)

If the execution not fails,

(σ∗∗,A)≡
(

σ
(n),A0

)
(377)

where: (378)
n≡ |a| (379)

σ
(0) ≡ σ

∗ (380)

∀ j ∈ [n], σ
( j) ≡Φ(σ ( j−1),asponsor, Is ·a[ j−1],0, Ii) (381)

G.5 Staking vote contract
The staking vote contract with address astake gives three interfaces:

G.5.1 Staking
For interface deposit(uint256), let n0 ∈ N256 be the integer parameter. The execution fails if

n0 < 1018 ∨ σ
∗[Is]b < n0 (382)
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If the execution not fails,

A≡ A0 (383)
σ
∗∗ ≡ σ

∗ except: (384)
σ
∗∗[Is]b ≡ σ

∗[Is]b−n0 (385)
σ
∗∗[Is]t ≡ σ

∗[Is]t +n0 (386)
σ
∗∗[Is]d ≡ σ

∗[Is]d · (n0, |IL|,σ∗[asponsor]s[k1]v) (387)
σ
∗∗[asponsor]s[k2]v ≡ σ

∗[asponsor]s[k2]v +n0 (388)
where: (389)

k1 ≡ [accumulate interest rate]ch (390)
k2 ≡ [total staking tokens]ch (391)

G.5.2 Lock staking to obtain vote power
For interface vote_lock(uint256,uint256), let n0,n1 ∈ N256 be the integer parameters. The execution fails if

n1 ≤ |IL| ∨ σ
∗[Is]t < n0 (392)

If the execution not fails,

A≡ A0 (393)
σ
∗∗ ≡ σ

∗ except: (394)
∀x≤ |IL|,σ∗∗[Is]v[x]≡ σ

∗[Is]v[|IL|+1] (395)
∀|IL|< x≤ n1,σ

∗∗[Is]v[x]≡max{σ∗[Is]v[x],n0} (396)

G.5.3 Withdraw
For interface withdraw(uint256), let n0 ∈ N256 be the integer parameter. The execution fails if

n0 > σ [Is]t −σ [Is]v[|IL|+1] (397)

If the execution not fails,

A≡ A0 (398)

σ
1 ≡ σ

∗ except: (399)

∀x≤ |IL|,σ1[Is]v[x]≡ σ
∗[Is]v[|IL|+1] (400)

σ
1[Is]t ≡ σ

∗[Is]t −n0 (401)

∀i < |σ∗[Is]d|,σ1[Is]d[i][amt]≡ σ
∗[Is]d[i][amt]− zi (402)

σ
1[Is]b ≡ σ

∗[Is]b +n0 +q (403)

σ
1[Is]r ≡ σ

∗[Is]r +q (404)

σ
1[asponsor]s[k2]v ≡ σ

∗[asponsor]s[k2]v−n0 (405)

σ
1[asponsor]s[k3]v ≡ σ

∗[asponsor]s[k3]v +q (406)

σ
∗∗ ≡ σ

1 except: (407)

σ
∗∗[Is]d ≡ Remove elements e from σ1[Is]d with e[amt] = 0 (408)

where: (409)

yi ≡
i−1

∑
j=0

σ
∗[Is]d[ j][amt] (410)

zi ≡max{0,min{n0− yi,σ
∗[Is]d[i][amt]}} (411)

q≡
|σ∗[Is]d|−1

∑
i=0

⌊
zi×σ∗[asponsor]s[k1]

σ∗[Is]d[i][accIR]

⌋
(412)

k1 ≡ [accumulate interest rate]ch (413)
k2 ≡ [total staking tokens]ch (414)
k3 ≡ [total issued tokens]ch (415)
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